• Title/Summary/Keyword: window sharing

Search Result 36, Processing Time 0.023 seconds

Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster (대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식)

  • Han, Soohee;Song, Jeong Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.445-452
    • /
    • 2019
  • In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.

MMJoin: An Optimization Technique for Multiple Continuous MJoins over Data Streams (데이타 스트림 상에서 다중 연속 복수 조인 질의 처리 최적화 기법)

  • Byun, Chang-Woo;Lee, Hun-Zu;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Join queries having heavy cost are necessary to Data Stream Management System in Sensor Network where plural short information is generated. It is reasonable that each join operator has a sliding-window constraint for preventing DISK I/O because the data stream represents the infinite size of data. In addition, the join operator should be able to take multiple inputs for overall results. It is possible for the MJoin operator with sliding-windows to do so. In this paper, we consider the data stream environment where multiple MJoin operators are registered and propose MMJoin which deals with issues of building and processing a globally shared query considering characteristics of the MJoin operator with sliding-windows. First, we propose a solution of building the global shared query execution plan. Second, we solved the problems of updating a window size and routing for a join result. Our study can be utilized as a fundamental research for an optimization technique for multiple continuous joins in the data stream environment.

Pick Up and Delivery Vehicle Routing Problem Under Time Window Using Single Hub (단일 허브를 이용한 시간 제약이 존재하는 수거 및 배달 차량 경로 문제)

  • Kim, Jiyong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • After Dantzig and Rasmer introduced Vehicle Routing Problem in 1959, this field has been studied with numerous approaches so far. Classical Vehicle Routing Problem can be described as a problem of multiple number of homogeneous vehicles sharing a same starting node and having their own routes to meet the needs of demand nodes. After satisfying all the needs, they go back to the starting node. In order to apply the real world problem, this problem had been developed with additional constraints and pick up & delivery model is one of them. To enhance the effectiveness of pick up & delivery, hub became a popular concept, which often helps reducing the overall cost and improving the quality of service. Lots of studies have suggested heuristic methods to realize this problem because it often becomes a NP-hard problem. However, because of this characteristic, there are not many studies solving this problem optimally. If the problem can be solved in polynomial time, optimal solution is the best option. Therefore, this study proposes a new mathematical model to solve this problem optimally, verified by a real world problem. The main improvements of this study compared to real world case are firstly, make drivers visit every nodes once except hub, secondly, make drivers visit every nodes at the right time, and thirdly, make drivers start and end their journey at their own homes.

Real-time Speed Limit Traffic Sign Detection System for Robust Automotive Environments

  • Hoang, Anh-Tuan;Koide, Tetsushi;Yamamoto, Masaharu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.237-250
    • /
    • 2015
  • This paper describes a hardware-oriented algorithm and its conceptual implementation in a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable gate array (FPGA). It solves the training and color dependence problems found in other research, which saw reduced recognition accuracy under unlearned conditions when color has changed. The algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution (4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various countries' speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale video frame are detected through two simple computational stages using global luminosity and local pixel direction. Pipeline implementation using results-sharing on overlap, application of a RAM-based shift register, and optimization of scan window sizes results in a small but high-performance implementation. The proposed system matches the processing speed requirement for a 60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in detection and recognition, even under difficult conditions such as rainy nights, and is implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.

Shared-medium Access Control Protocol for the ATM Access Network - Part I : DMR-II Protocol Architecture - (ATM 액세스망을 위한 공유매체 접속 제어 프로토콜 - I부 : DMR-II 프로토콜 구조 -)

  • 황민태;김장경;이정태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.379-388
    • /
    • 1998
  • In this paper we propose a DMR-II shared-medium access control protocol which was developed for the ATM access network users to support isochronous and non-isochronous traffics simultaneously under the bandwidth sharing environment, and describe its architecture and operation principles. The DMR-II protocol uses the slotted-ring topology, and gives the higher transmission priority to the isochronous traffic than the non-isochronous traffic. To support the isochronous traffic it uses the slot reservation mechanism, and maintains the delay variation of the isochronous traffic beyond the threshold value by using the blocking mechanism whenever the total user traffic overflows the network's bandwidth limitation. for the non-isochronous traffic the DMR-II protocol lets all the nodes to have fair transmission chances by using the reset mechanism based on the window counter scheme.

  • PDF

Latent Autoimmune Diabetes in Adults: A Review on Clinical Implications and Management

  • Pieralice, Silvia;Pozzilli, Paolo
    • Diabetes and Metabolism Journal
    • /
    • v.42 no.6
    • /
    • pp.451-464
    • /
    • 2018
  • Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by a less intensive autoimmune process and a broad clinical phenotype compared to classical type 1 diabetes mellitus (T1DM), sharing features with both type 2 diabetes mellitus (T2DM) and T1DM. Since patients affected by LADA are initially insulin independent and recognizable only by testing for islet-cell autoantibodies, it could be difficult to identify LADA in clinical setting and a high misdiagnosis rate still remains among patients with T2DM. Ideally, islet-cell autoantibodies screening should be performed in subjects with newly diagnosed T2DM, ensuring a closer monitoring of those resulted positive and avoiding treatment of hyperglycaemia which might increase the rate of ${\beta}-cells$ loss. Thus, since the autoimmune process in LADA seems to be slower than in classical T1DM, there is a wider window for new therapeutic interventions that may slow down ${\beta}-cell$ failure. This review summarizes the current understanding of LADA, by evaluating data from most recent studies, the actual gaps in diagnosis and management. Finally, we critically highlight and discuss novel findings and future perspectives on the therapeutic approach in LADA.

Acquiring Credential and Analyzing Artifacts of Wire Messenger on Windows (Windows에서의 Wire 크리덴셜 획득 및 아티팩트 분석)

  • Shin, Sumin;Kim, Soram;Youn, Byungchul;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.61-71
    • /
    • 2021
  • Instant messengers are a means of communication for modern people and can be used with smartphones and PCs respectively or connected with each other. Messengers, which provide various functions such as message, call, and file sharing, contain user behavior information regarded as important evidence in forensic investigation. However, it is difficult to analyze as well as acquire smartphone data because of the security of smartphones or apps. However, messenger data can be extracted through PC when the messenger is used on PC. In this paper, we obtained the credential data of Wire messenger in Windows 10, and showed that it is possible to log-in from another PC without authentication. In addition, we identified and classified major artifacts generated based on user behavior.

The Study of Response Model & Mechanism Against Windows Kernel Compromises (Windows 커널 공격기법의 대응 모델 및 메커니즘에 관한 연구)

  • Kim, Jae-Myong;Lee, Dong-Hwi;J. Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.1-12
    • /
    • 2006
  • Malicious codes have been widely documented and detected in information security breach occurrences of Microsoft Windows platform. Legacy information security systems are particularly vulnerable to breaches, due to Window kernel-based malicious codes, that penetrate existing protection and remain undetected. To date there has not been enough quality study into and information sharing about Windows kernel and inner code mechanisms, and this is the core reason for the success of these codes into entering systems and remaining undetected. This paper focus on classification and formalization of type target and mechanism of various Windows kernel-based attacks, and will present suggestions for effective response methodologies in the categories of, "Kernel memory protection", "Process & driver protection" and "File system & registry protection". An effective Windows kernel protection system will be presented through the collection and analysis of Windows kernel and inside mechanisms, and through suggestions for the implementation methodologies of unreleased and new Windows kernel protection skill. Results presented in this paper will explain that the suggested system be highly effective and has more accurate for intrusion detection ratios, then the current legacy security systems (i.e., virus vaccines and Windows IPS, etc) intrusion detection ratios. So, It is expected that the suggested system provides a good solution to prevent IT infrastructure from complicated and intelligent Windows kernel attacks.

  • PDF

The Performance Improvement using Rate Control in End-to-End Network Systems (종단간 네트워크 시스템에서 승인 압축 비율 제어를 이용한 TCP 성능 개선)

  • Kim, Gwang-Jun;Yoon, Chan-Ho;Kim, Chun-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2005
  • In this paper, we extend the performance of bidirectional TCP connection over end-to-end network that uses transfer rate-based flow and congestion control. The sharing of a common buffer by TCP packets and acknowledgement has been known to result in an effect called ack compression, where acks of a connection arrive at the source bunched together, resulting in unfairness and degraded throughput. The degradation in throughput due to bidirectional traffic can be significant. Even in the simple case of symmetrical connections with adequate window size, the connection efficiency is improved about 20% for three levels of background traffic 2.5Mbps, 5.0Mbps and 7.5Mbps. Otherwise, the throughput of jitter is reduced about 50% because round trip delay time is smaller between source node and destination node. Also, we show that throughput curve is improved with connection rate algorithm which is proposed for TCP congetion avoidance as a function of aggressiveness threshold for three levels of background traffic 2.5Mbps, 5Mbps and 7.5Mbps. By analyzing the periodic bursty behavior of the source IP queue, we derive estimated for the maximum queue size and arrive at a simple predictor for the degraded throughput, applicable for relatively general situations.

TCP Congestion Control of Transfer Rate-based in End-to-End Network Systems (종단간 네트워크 시스템에서 전송율 기반 TCP 혼잡제어)

  • Bae, Young-Geun;Yoon, Chan-Ho;Kim, Gwang-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this paper, we improve the performance of bidirectional TCP connection over end-to-end network that uses transfer rate-based flow and congestion control. The sharing of a common buffer by TCP packets and acknowledgement has been known to result in an effect called ack compression, where acks of a connection arrive at the source bunched together, resulting in unfairness and degraded throughput. The degradation in throughput due to bidirectional traffic can be significant. For example, even in the simple case of symmetrical connections with adequate window size, the connection efficiency is improved about 20% for three levels of background traffic 2.5Mbps, 5.0Mbps and 7.5Mbps. Otherwise, the throughput of jitter is reduced about 50% because round trip delay time is smaller between source node and destination node. Also, we show that throughput curve is improved with connection rate algorithm which is proposed for TCP congestion avoidance as a function of aggressiveness threshold for three levels of background traffic 2.5Mbps, 5Mbps and 7.5Mbps.

  • PDF