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Abstract: This paper describes a hardware-oriented algorithm and its conceptual implementation in 
a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable 
gate array (FPGA). It solves the training and color dependence problems found in other research, 
which saw reduced recognition accuracy under unlearned conditions when color has changed. The 
algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution 
(4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under 
various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various 
countries’ speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale 
video frame are detected through two simple computational stages using global luminosity and 
local pixel direction. Pipeline implementation using results-sharing on overlap, application of a 
RAM-based shift register, and optimization of scan window sizes results in a small but high-
performance implementation. The proposed system matches the processing speed requirement for a 
60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in 
detection and recognition, even under difficult conditions such as rainy nights, and is 
implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.  

 
Keywords: Advanced driver assistance systems (ADAS), Speed limit traffic sign detection, Rectangle pattern 
matching, Circle detection, FPGA implementation  
 
 
1. Introduction 

Speed limit traffic sign recognition is very important 
for the fast-growing advanced driver assistance systems 
(ADAS). Under continual pressure for greater road safety 
from governments, traffic sign recognition and active 
speed limitation become urgent issues for an ADAS. 
Important traffic sign information is provided in the 
driver’s field of vision via road signs, which are designed 
to assist drivers in terms of destination navigation and 
safety. Most important for a camera-based ADAS is to 
improve the driver’s safety and comfort. Detecting a traffic 
sign can be used in warning drivers about current traffic 
situations, dangerous crossings, and children’s paths, as 
shown in Fig. 1. Although the navigation system is 

available, it cannot be applied to new roads or places that 
the navigation signal cannot reach, or with electronic speed 
limit traffic signs where the sign changes depending on the 
traffic conditions. An assistant system with speed limitation 
recognition ability can inform drivers about the change in 
speed limit, as well as notify them if they drive over the 
speed limit. Hence, the driver’s cognitive tasks can be 
reduced, and safe driving is supported. 

Speed limit traffic (SLT) sign recognition systems face 
several problems in real-life usage, as shown in Fig. 2. 
(1) Color: the color of an SLT sign will change depending 

on the light, weather conditions, and age of the sign. 
(2) Sign construction: light-emitting diode (LED) SLT 

signs appear different in color, shape, and luminosity 
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from printed signs, depending on the angle between the 
camera and the sign. 

(3) Light conditions: the presence of the sun and of some 
types of lights, in daytime and at night, makes the sign 
look different. 

(4) Font: fonts on traffic signs are decided by governments, 
and they are different in various countries. The 
difference can be seen in the thickness and shape of the 
number, as shown in Figs. 2 (a), (b), (c), and (d). 

(5) Distortion: the image of an SLT sign has distortion 
along three axes (x, y, and z), which depend on the 
angle between camera and sign. 

(6) Accuracy: high accuracy in recognition rate is required, 
which means that the same sign should be correctly 
recognized at least once in a sequence scene. 

(7) Real-time processing: the automotive system must be 
able to process 30 to 15 fps under various platforms. 

(8) Stability: under various platforms, the system must not 
need retraining when users change devices, such as the 
camera. 
A lot of research on SLT sign recognition (SLTSR) for 

the ADAS has been done, but those SLTSR algorithms 
have difficulty recognizing when color has changed due to 
light conditions, such as the presence of sunshine (Fig. 
2(h)), illumination at night (Fig. 2(i)), LED signs (Fig. 
2(e)), and in recognizing signs in different countries. They 
also have difficulty with high-accuracy, real-time processing 
using few computational resources on available low-price 
devices. 

In this study, we aim to solve these color and 
environment problems with a non-color–based recognition 
approach, in which grayscale images are used in both 

speed limit sign candidate detection and number 
recognition. SLT sign candidates are detected from each 
input frame before recognizing the limit speed in real time. 
Our system combines many simple and easy computation 
features of SLT signs, such as area luminosity, pixel 
direction, and block histogram, into a real-time, high-
accuracy, and low-computational–cost design. Hence, it is 
implementable on a low-cost and resource-limited 
automotive-oriented field-programmable gate array 
(FPGA). The target platform is the Xilinx Zynq 7020, 
which has 85K logic cells (1.3 M application-specific 
integrated circuit gates), 53.2K lookup tables (LUTs), 
106.4K registers, and 506KB block random access 
memory. Its price is about $15 per unit [24]. 

Related works and an overview of our approach to SLT 
sign recognition is presented in Section 2. The available 
SLT sign recognition system architectures and related 
algorithms for SLT sign candidate detection are discussed 
in Section 3. Section 4 describes how to combine simple 
features of non-color–based SLT signs for a real-time 
recognition system. Section 5 offers an overview of the 
hardware implementation of the proposed architecture. 
Discussions on accuracy, hardware size, and throughput of 
the proposed algorithm for SLT sign detection are given in 
Section 6. Section 7 concludes this paper 

2. Image Size and Scan Window Size 
Requirement for SLT Sign Detection 

The right side of Fig. 3 shows the differences in image 
sizes of an SLT sign at different distances and angles in 
real life. We define a scene as a sequence of all frames in 
which the same sign appears in, and disappears from the 
observation field of the camera. In one scene, when a 
640×360 pixel camera is located at more than 30 meters in 
front of the sign, the 60 cm diameter SLT sign in Japan 
will appear as small as 10×10 pixels, as shown on the left 
of Fig. 3. In that case, the size of the number in the sign is 

Car in front

Lane detection

Traffic sign recognitionDriving Assistant 
System

Pedestrian

Advanced Driver Assistance System (ADAS)

(until 2017)

Fig. 1. Chalenges of ADAS system toward active
safety. 
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Fig. 2. The appearance differences of speed limit traffic
sign in various conditions. 
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as small as 7×6 pixels, which is really hard to recognize, 
even with the human eye. This size increases to 20×20 
pixels when the camera gets closer to the sign at a distance 
of 30 meters (with a 10×10-pixel number); then, the size 
gradually increases to 50×50 pixels at a distance of 16 
meters (on the highway) before disappearing from the 
observation field of the camera. At sizes bigger than 20×20, 
appearance of the speed sign becomes recognizable, as 
shown at the bottom of Fig. 3. When a 1920×1080-pixel 
(full HD) camera, or a camera with higher resolution, is 
used, the size of an SLT sign becomes bigger. Although 
the image size of an SLT sign and the processing size are a 
trade-off, the range of 20×20 to 50×50 is always available 
in a scene. An example of a scene in a real situation is 
shown in Fig. 4.  

From that real situation, SLT sign detection should not 
use up too many computational resources to recognize the 
SLT sign at size smaller than 20×20 or bigger than 50×50. 
Since the SLT sign appears in a range of sizes, the system 
must process each input frame with scan windows in a 
range of sizes for SLT sign detection and recognition at the 
proposed distance. Our proposed SLT sign detection 
algorithm is designed to detect an SLT sign in the range of 
20×20 to 50×50 pixels, which will appear in the 
observation field of cameras with resolution higher than 
640×360. 

If the vehicle moves at 200 km/h, a 60 fps camera can 
takes 15 frames for SLT sign detection during the 14 meter 
distance between 30 meters away and 16 meters away 
from the sign. If the SLT sign can be recognized from 
those frames, a detection and recognition system will work 
well, even if the vehicle moves at 200 km/h. Our system 
aims for this goal. 

3. Related Works 

3.1 Software-Oriented Implementations 

3.1.1 Neural Network–Based Sign Recognition 
The multi-column deep neural networks and the multi-

scale convolutional network were introduced by Ciresan  
et al. [21] and Sermanet and LeCun [22] in the Neural 
Networks contest. They achieved as high as 99% recogni-

tion accuracy, but required a huge training data set, as  
well as huge computational resources (four 512-core 
GPUs) for traffic sign recognition. Recognition time for a 
full HD image will be significantly increased to an 
unacceptable level for real-life usage. In addition, they use 
color features in their recognition, and so face accuracy 
problems when recognizing signs under unknown light 
conditions. 

3.1.2 Machine Learning–Based Recognition 
Machine learning was used by Zaklouta and 

Stanciulescu [20] and Zaklouta et al. [23] for traffic sign 
recognition. They used support vector machine (SVM) 
with a histogram of oriented gradient (HOG) feature for 
traffic sign detection, and tree classifiers (K-d tree or 
random forest) to identify the content of the traffic signs. 
They achieved accuracy of 90% with a processing rate of 
10-28 fps. Again, they faced the color problem in their 
implementation, and so it is difficult to apply to other 
situations (night, rain, and so on). 

3.1.3 Color-Based, Shape-Based, and 
Template-Based Recognition 

A general feature of traffic signs is color, which is 
predetermined to ensure they get the driver’s attention. 
Hence, color is used as a feature in a lot of image 
segmentation research. Torresen et al. [16] detected the red 
circle of a traffic sign by utilizing a red–white–black filter 
before applying a detection algorithm. Miura et al. [7] 
detected traffic sign candidate regions by focusing on the 
white circular region within some thresholds. Zaklouta and 
Stanciulescu [20] also used color information within a 
threshold for traffic sign image segmentation. This 
detection method required a color camera and more 
computation resources, such as memory, for color image 
storage and detection. Similar to the neural network–based 
and machine learning–based recognition approaches, 
color-based segmentation relies on the red color, and so, 
has difficulty with recognition when the color of the traffic 
sign has changed due to age and lighting conditions. 

Another method for traffic sign candidate detection is 
based on the shape of the signs. In this approach [5], a 
feature where a rectangular structure yields gradients with 
high magnitudes at its borders is used in traffic sign 
candidate detection. Moutarde et al. [8] used edge 
detection for rectangle detection and a Hough transform 
for circle detection. This method is robust to changes in 
illumination, but it requires complex computation, such as 
the Hough transforms. Processing the transformation and 
extracting matching peaks from big image are computa-
tionally complex for real-time processing systems. 

Template matching [16] uses a prepared template for 
area comparison with various traffic sign sizes. The 
approach simply takes the specific color information of an 
area, and compares it with a prepared template for matches. 
Because the sizes of the traffic signs vary from 32x32 to 
78x78 pixels, a lot of hardware resources and computation 
time are required. 

Frame 4, size = 18 Frame 6, size = 21 Frame 8, size = 23

Frame 10, size = 26 Frame 12, size = 28 Frame 16, size = 38

Fig. 4. A scene in real situation with image of SLT sign
gradually increase. 
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3.2 Hardware Oriented Implementations 

3.2.1 Hardware/Software Co-design 
Implemen-tations 

Hardware/software co-design on a low-cost Xilinx 
Zynq FPGA system was presented by Han [1], in which an 
input color image of the traffic sign is processed by 
software on a PC before sending it to the Zynq 7000 
system on chip (SoC). The traffic sign candidates are 
detected with hardware using color information before 
refining and performing template-based matching on an 
ARM core. This hardware processing requires a lot of 
memory access, as well as software processing on both the 
ARM core and PC, so latency is high and throughput is 
low. Big templates of 80×80 pixels are required for 
improvement of detection accuracy. 

Muller et al. [9] applied software and hardware design 
flows on a Xilinx Virtex-4 FPGA to implement a traffic 
sign recognition application. It combines multiple embedded 
LEON3 processors for preprocessing, shape detection, 
segmentation, and extraction with hardware IPs for 
classification in parallel to achieve latency not longer than 
600 ms to process one frame. However, this latency is not 
fast enough to apply to real-time detection and recognition. 

Irmak [3] also utilized an embedded processor approach 
with minimal hardware acceleration on a Xilinx Virtex 5 
FPGA. Color segmentation, shape extraction, morphological 
processing, and template matching are performed on a 
Power PC processor with software, and edge detection is 
performed on a dedicated hardware block. 

Waite and Oruklu [17] used a Xilinx Virtex 5 FPGA 
device in a hardware implementation. Hardware IPs are 
used for hue calculation, morphological filtering, and 
scanning and labeling. The MicroBlaze embedded core is 
used for data communication, filtering, scaling, and traffic 
sign matching. 

3.2.2 Neural Network on an FPGA 
A neuron network implementation on a Xilinx Vitex 4 

FPGA for traffic sign detection was presented by Souani et 
al. [14]. The system works with low-resolution images 
(640×480 pixels) with two predefined regions of interest 
(ROIs) of 200×280 pixels. The small ROI results in high 
recognition speed. However, the accuracy is as low as 82%, 
and the traffic signs must be well lit. Hence, this system 
has difficulty when applied at night or to back-lit signs. 

3.3 A Proposed Approach for Robust 
Automotive Environments 

All the related speed limit traffic sign recognition 
systems use color as an important feature for detection and 
recognition in their implementations, and so they have 
difficulty in recognizing long-term deterioration in traffic 
signs, traffic signs under different lighting conditions, and 
with LED traffic signs. They also use processing with high 
computational complexity, such as the Hough transform, 
for the traffic sign shape detection, and tree classifiers, 
SVM, and complex multi-layer neural networks for traffic 

sign identification. So the implementation resources 
become large, and the hardware costs are also high. The 
processing time of the available implementations also 
presents problems when applied in real life to low-end 
vehicles. In addition, the recognition approaches using 
neural networks and machine learning require learning 
processes with a huge dataset. For each user with a 
different platform, such as camera type, a specific dataset 
must be prepared and a relearning process is necessary to 
guarantee high accuracy. 

Different from the above works, which rely on color 
features and high complexity processing in traffic sign 
recognition, our approach utilizes simple yet effective 
speed limit traffic sign features from grayscale images. 
The proposed approach utilizes multiple rough, simple, 
and easily computable features in three-step processing to 
achieve a robust speed limit traffic sign detection system. 
Using simple features makes the proposed system 
applicable to various platforms, such as the type of camera 
(color or grayscale, high- or low-resolution), and in the 
line-up of FPGAs (low-end, automotive, high-end). It is 
also robust under various conditions in Japan scenarios, 
such as illumination conditions (daytime, night time, and 
rainy nights), and types of road (local roads and highways). 
The simple yet effective features enable it to easily 
optimize a parameter set so as to meet features of the speed 
limit traffic sign systems in other countries. The proposed 
features include area luminosity difference, pixel direction, 
and an area histogram. The computation of these simple 
features only requires simple and low-cost hardware 
resources such as adders, comparators, and first-in, first-
out (FIFO) stacks. So, it is possible to implement on any 
line-up of FPGAs. The proposed speed limit traffic sign 
recognition system can be also extended to other traffic 
sign recognition. 

4. Rough and Simple Feature Combi-
nation for Real-Time SLTSR Systems 

4.1 Multiple Simple Features of SLT Signs 

4.1.1 Shared Luminosity Feature Between 
Rectangle and Circle 

Fig. 5 shows the area luminosity feature of a scan 
window with a circular speed limit traffic sign inside, in 
which the circle line of the sign is much darker than the 
adjacent white area in a grayscale image. It means that the 
luminosity of the areas that contain the circle is much 
lower than the adjacent ones. If the circle fits within the 
scan window, the location of the dark and the white areas 
can be predefined as B1 to B8 (say, for black) and W1 to 
W8 (say, for white) in Fig. 5. The luminosity differences 
between those corresponding black and white areas exceed 
a predefined threshold. Depending on the view angle, the 
brightness of the black and white areas is different, and so 
a variable threshold is used in our detection algorithm. 
This luminosity feature is simple but effective because it is 
extendable to the detection of other shape types, such as a 
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hexagon. In addition, this feature is applicable to any 
image size, from VGA to 4K. It is also stable if a high-
resolution image is down-sampled to a lower resolution. 
Hence, down-sampling an image can be used in detection, 
instead of a high-resolution image to save computational 
resources without sacrificing accuracy. 

4.1.2 Pixel Local Direction Feature of Circle 
Fig. 6 shows a local feature of a circle in a binary 

image, in which pixels at the edge of a circle have different 
direction depending on its location. For a pre-determined 
size, those locations and directions are pre-determined. 
Direction of a pixel can be verified using simple patterns 
of 3×3 pixels. A circle will have the total number of pixels 
that match each specific direction to get into a predefined 
range. 

4.1.3 Block Histogram Feature of Numbers 
Fig. 7 shows examples of a histogram for binary 

images of the speed sign numbers “4”, “5”, “6”, “8” and 

“0” in Japan along two axes. Locations of the maximum 
and minimum in the histogram, as well as the ratio 
between those rows/columns and others, are different. The 
maximum and minimum in the histogram for each axis and 
area (the total number of pixels) are the features of the 
numbers and can be used to recognize the speed sign 
number [18]. 

4.2 Multiple Simple Feature-Based Speed 
Limit Sign Recognition System 

4.2.1 System Overview 
Fig. 8 shows the speed limit recognition system 

overview. The input grayscale image is raster scanned with 
a scan window (SW) in the rectangle pattern matching 
(RPM) [26] module. It computes the luminosity of 
rectangular and circular traffic signs, as shown in Fig. 5. 
The luminosity differences of those areas are then 
compared with a dynamic threshold to roughly determine 
if the SW contains a rectangle/circle shape as a traffic sign 
candidate with the same size. Since the RPM algorithm 
utilizes common features of the circle and rectangle, it can 
be used to recognize both circular and rectangular signs. 
The sign enhancement filter developed by our group 
includes a hardware-oriented convolution filter and image 
binarization, and is applied to the 8-bit grayscale pixels of 
traffic sign candidates, changing them to 1-bit black-and-
white (binary) pixels for circle detection and speed number 
recognition. The sign enhancement process helps increase 
the features of the speed numbers and reduces the amount 
of data being processed. Circle detection uses a local 
direction feature at the circle’s edge to decide if the 
detected rectangle/circle candidates are really a circle mark 
or not, using a binary image. Direction of pixels in 
different areas in the SW and patterns for pixel local 
direction confirmation are shown in Fig. 6. Finally, the 
speed number recognition (NR) module analyzes block 
histogram features of the regions of interest and compares 
them with the predefined features of speed numbers for the 
NR module [18]. 

 

Fig. 5. Shared luminosity feature between rectangle and
circle. 
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4.2.2 Parallel Raster Scanning of Multiple 
Scan Window Sizes 

Although the image size of the system is variable, and 
our system is applicable to 4K, full HD, and VGA sizes, in 
the following section, for simplification of explanation, we 
assume the input image size is 640×360. The detectable 
speed limit traffic sign is in a range from 20×20 to 50×50 
pixels. We use a raster scanning method with the above 
scan window sizes, as shown in Fig. 9, to keep the 
processing time constant. At any clock cycle, when a new 
pixel (x,y) gets into the system, a column of 50 pixels from 
(x,y) will be read from FIFO to SWs for detection, as 
shown on the right of Fig. 9. All those SW sizes (from 
20×20 to 50×50 pixels) are processed in parallel in one 
clock cycle to find all candidates at different sign sizes at 
that position. In the circle detection module, the three last 
continuous columns of the scan window are buffered in 
registers for detection in the same manner. 

4.2.3 Feature and Strategy for LED Speed 
Limit Sign Detection 

Fig. 10 shows the difference between painted speed 
signs and LED type speed signs, in which the number in 
the LED speed sign is brighter than that in the painted sign, 
and the background of the sign is black in Japan. It makes 
the number in the LED sign became off-white in the 
grayscale image, and so the color of the circle line in the 
grayscale image becomes white, while the adjacent area 
becomes dark, as shown in the middle of Fig. 10. 

Consequently, the luminosity feature in Fig. 5 is easily 
extended and applied to detect an LED speed sign. The 
detection of black and white luminosity is inverted to be 
applied to grayscale images of the LED speed sign to 
uniform features of painted and LED signs. 

5. Hardware Implementation 

5.1 Algorithm Modification for Efficient 
Hardware Implementation 

Fig. 11 shows the data processing flow, which is 
optimized for hardware implementation. The hardware 
module, once implemented, will occupy hardware 
resources, even if it is used or not. Hence, in our hardware 
implementation, the sign enhancement and binarization 
(SEB) module will work in parallel with the rectangle 
pattern matching module to reduce the recognition latency 
by reducing random memory access and applying the 
raster scan. If a high-resolution camera is used, 
preprocessing, which only performs the down-sampling of 
the grayscale input image to one-third, is an option to 
reduce the computational resources occupied by RPM. The 
number recognition (NR) and the circle detection (CD) 
modules process each binary image candidate of a speed 
limit traffic sign in sequence, and the two modules can 
process the speed sign candidates in parallel to share the 
input. The circle detection result can be used to enhance 
the decision of speed number recognition. The hardware 
size is small, but processing time for NR is increased 
depending on the number of speed sign candidates. 
Another approach is making CD to process the speed sign 
candidate in parallel with RPM and SEB. Results of CD is 
used to reduce the number of speed limit traffic sign 
candidates detected by RPM. It reduces the processing 
time, but the penalty is an increase in hardware size. In our 
prototype design, we will introduce a pipeline design for 
the first approach. 

The optional pre-processing module is used if high-
resolution and/or an interlace camera is used. If an 
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Fig. 9. Multi-scan window size raster scan in parallel by
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interlaced scan is used, the preprocessing module de-
interlaces by taking odd or even lines and columns of the 
input image before sending data to other modules. If a 
high-resolution camera such as a full HD camera is used, 
the preprocessing module is used to down-sample the input 
image to the appropriate image size, such as 640×360 for 
RPM and CD. It helps to reduce the number of candidates 
that need to be processed in NR. Since the luminosity and 
the local pixel direction features used in RPM and CD are 
not affected by down-sampling, down-sampling is enough 
for hardware resource reduction without sacrificing 
detection accuracy. 

5.2 Hardware-Oriented Pipeline 
Architecture 

Fig. 12 shows the two-stage pipeline architecture of the 
speed limit recognition system. The system is able to scan 
for traffic signs up to 50×50 pixels in size. The proposed 
input image is 8-bit grayscale with a resolution of 640×360 
= 230,400 pixels. 

It contains two stages of RPM and NR with four main 
modules of RPM, SEB, CD and NR. A judgement module 
is included to decide which speed limit is shown in the 
traffic sign. Support for RPM is a number of 8-bit FIFOs. 

The SEB and RPM processing are independent, and 
both of them work with grayscale images, and so they 
could be processed in parallel in the first pipeline stage as 
suggested by Fig. 11. Results from the CR module are 
used to strengthen the judgment of the speed limit 
recognition. CR and NR modules process binary images, 
and so are executed in parallel for input data sharing 
before the final judgment in the second pipeline stage. 
Those 8-bit processing modules and 1-bit binary 
processing modules are connected with the others through 
two memories. The first one, the location and scan window 
flags FIFO (LSW-FIFO), is used to store the position of 
the sign candidates in the input frame and the detected 
scan window sizes at that position. The second one, a 
general memory called binary image memory (BIM) with 
a size of 640×360 bits, is used to store the black-and-white 
bit value of each frame. Two independent memories and a 
memory-swapping mechanism are necessary to allow the 
8-bit and 1-bit processing modules access the binary image 
memories to read and write in parallel.  

Fig. 13 shows the timing of the two pipeline stages of 
the proposed SLT sign detection and recognition system. 
RPM and SEB occur at the RPM stage in parallel using the 

same pixel data input. An optional scaling-down module 
can be applied to input data for RPM if necessary for high-
resolution camera usage. The scan windows in RPM and 
SEB are pipeline-processed with one input pixel in each 
clock cycle. Hence, about 640×360=230,400 clock cycles 
are necessary for the first stage. During the processing 
time of the first frame, the detection result is written into 
the result FIFO, and the binarization image result is written 
into BIM 1 for the second stage. At the second stage, the 
CD and the NR modules read data from the LSW-FIFO 
and BIM 1 for processing before handing the result to the 
judgment module. At the same time, the data of the second 
frame is processed in the RPM stage. The result is written 
into BIM 2. Then, the NR stage of the second frame occurs 
with the previously written data inside BIM 2. The same 
process occurs with other frames, and so the system 
processes all frames in the pipeline. 

5.3 Implementation of Area Luminosity 
Computation for RPM using 
Computa-tional Result-Sharing on 
Overlap 

Depending on the distance between the vehicle 
(camera) and the SLT sign, the size of the sign on the input 
image varies from 20×20 to 50×50 pixels. We need to scan 
the input frame with various scan window sizes, as shown 
in Fig. 9 for SLT sign detection at all distances. Inside 
each scan window, the shared luminosity feature between 
rectangle and circle in Fig. 5 is used. Two reusable 
computations generated by local and global overlaps, as 
shown in Fig. 14, are applied to the RPM implementation 
to reduce the hardware size.  

The first re-usable computational result concerns local 
overlap between two adjacent scan windows, as shown in 
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the left side of Fig. 14. It is locally applied to the 
brightness computation of the same area in two adjacent 
scan windows (e.g. B1 area) and is compatible with the 
raster scan method. The algorithm, which is compatible 
with the raster scan method, and hardware implementation 
for pipeline area luminosity computation, is shown in Fig. 
15. The overlapped area between St-1 and St (Sstore

t-1) is 
reused without computation (Fig. 15(a)). The luminosity of 
the preferred area St is generated by that of the overlapped 
area Sstore

t-1 plus the luminosity of the new input area Sadd
t. 

Luminosity of the overlapped area Sstore
t-1 is computed 

from the luminosity of area St-1, which is computed during 
the processing of the previous SW, and subtracts that of 
the subtraction area (Ssub

t-1). Hence, the computation is 
now for the luminosity of the addition area (Sadd

t), and 
storing the result for later use. At the same time, the newly 
computed luminosity of the Sadd

t area is added to that of 
the St-1 area before subtracting the previously stored 
luminosity of the Ssub

t-1 area for area St luminosity 
computation. Hardware design of one scan window size 
for the brightness computation for each area of B1~W8 is 
shown in Fig. 15(b).  

The second overlap is globally applied to the scan 
windows inside a frame, as shown in the right side of Fig. 
14. During the processing of scan window t (SWt), the 
brightness of areas W3, W4, B3, and B4 are computed. 
During SWt+n processing, these areas become B7, B8, W7 
and W8, respectively. Hence, the brightness computation 
results of those areas in SWt can be stored in FIFO for later 
reuse in SWt+n. The upper right part of Fig. 16 shows how 
to use FIFO to design rectangle pattern matching for a 
single scan window size using global overlap. 

Combination of the luminosity computation using local 
and global overlaps results in simple and compact 
hardware design of a single scan window, as shown in the 
upper part of Fig. 16. The computation for other scan 
window sizes at the same position can be done in parallel 
with the same input pixels in a column, as shown in Fig. 9. 
The final design with all the necessary scan window sizes 
operating in parallel is shown in the lower part of Fig. 16. 

Due to the change in features of the LED speed sign 
shown in Fig. 10, that is, the black areas became white and 
vice versa, luminosity difference in the LED sign is also 
reversed. Instead of reversing the grayscale image for LED 

sign detection, which requires a lot of computational 
resources, inversion of the luminosity difference between 
black and white areas is enough for LED speed sign 
detection. It can be done by taking the absolute value of 
the luminosity difference before making a comparison with 
the threshold. 

5.4 Local Pixel Direction Based Circle 
Detection Implementations 

5.4.1 Straight-Forward Implementation 
Fig. 17 shows the mechanism and design of the circle 

recognition module. A 3×3 pixel array is used to detect the 
direction of the input pixel using local border templates in 
Fig. 6. The direction is then compared with the expected 
direction of that pixel. The number of matches is voted on 
and stored in the register. The final number of matches is 
compared with a previously decided threshold. If the 
number of matches is in the predefined threshold range, 
the input SW is considered a circle. 

5.4.2 Fast and Compact Implementation 
The above direct circle detection design in Fig. 17 can 

be improved for faster operation using pipeline and 
computation reuse of local overlap, which are suitable for 
raster scanning. Since the templates are 3×3 pixels, data of 
the last three columns for an SW is buffered for direction 
confirmation and voting. The pipeline computation 
mechanism of matched pixel voting for each expected 
direction in a scan window is shown in Fig. 18. When a 
new pixel arrives, its corresponding column in the SW and 
two previous ones are buffered, making a 3-pixel column, 
as shown in the left side of Fig. 18. There is overlap in 
3×3-pixel-patterns among different lines in the 3-pixel 
column; hence, a 1×3-pixel pattern of each line is checked 
separately before combining three adjacencies for the final 
direction confirmation. In a column, the upper part needs 
to be verified with three directions: down-right ( ), down ↘
(↓), and down-left ( ); the middle part needs to be ↙
verified with two directions: right (→), left (←); and the 
lower part needs to be verified with three directions: up-
right ( ), up (↑), and up↗ -left ( ). Dividing the input ↖
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column into three parts (upper, middle, and lower) helps to 
reduce the number of directions that need to be verified at 
each location to one-third. The right part of Fig. 18 shows 
the direction voting for one area among the eight, using 
reusable computational results, in which the direction 
voting results in the overlap in each area between SWi-3, 
and SWi is reused without revoting. The voting for an area 
in SWi is generated by the voting result of the overlapped 
area plus the voting result of the new input area (dircol+i). 
The voting result of the overlapped area is the result of the 
previously voted area (dirareai-3) without the subtraction 
area (dircol-i). The voting is now for the addition area 
(dircol+i) and storing the result for later usage as 
subtraction (dircol-i). At the same time, the newly voted 
column result dircol+i is added with dirareai-3 before 
subtracting the previously stored dircol-i voting result for 
that area’s (areai) final voting result (dirareai ). As shown 
in Fig. 18, the waiting time after the direction of the newly 
input pixels is verified and voted on, until the time it 
becomes addition dircol+i and subtraction dircol-i of 
different directions, is different. The hardware imple-
mentation of CD using voting for the local pixel direction 
at the edge is shown in Fig. 19. When a new binary pixel 
arrives in the system, the corresponding three columns (the 
last columns in Fig. 18) are given to the direction voting 
module. Pattern confirmation, a shared module among 
various SW sizes compares each of the three inputs in a 
line with the line patterns. Three adjacent results are then 
combined in a column-direction confirmation submodule 
before voting for the number of pixels that match a 

specific direction for each SW size. These results are 
pushed into column-direction voting FIFOs and become 
dircol+ and dircol- at a specific time, which depends on the 
pixel location and size of the scan window. The voting 
results of all columns in the corresponding area are 
accumulated, forming area voting result dirarea. Then, 
dirarea is stored in the local area direction voting register. 
All local area voting results are added together, making the 
SWi directions voting result for CD. 

6. Evaluation Results and Discussion 

6.1 Datasets in Various Conditions 

6.1.1 Dataset Taken in Japan 
 The Japan dataset is used to verify speed sign 

recognition for moving images under various conditions, 
as shown in Fig. 20 and Fig. 21. It includes 125 daytime 
scenes on highways and local roads; 25 scenes on a clear 
night, and 44 scenes on rainy nights on local roads, as 
shown in Table 1. When a high-resolution camera (full 
HD) is used, images at both original and down-sampled 
sizes are tested. All of the frames are grayscale. Frames 
with full HD resolution are down-sized to 1/3 on each axis 
for simulation in our test. The algorithm is easily 
implemented with few hardware resources by reading the 
pixels after every three columns and rows. A scene is 
considered to be all the contiguous frames in which the 

Fig. 17. Straight-forward implementation of circle detec-
tion using local pixel direction. 
 

Fig. 18. Fast and compact local pixel direction voting
using overlap. 

 

Fig. 19. Fast and compact implementation of circle
detection using local pixel direction and overlap. 

 

Fig. 20. Daytime scenes in local road and highway with
sign distortion: recognizable with no difficulty. 
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same sign appears in the observable field of the camera 
until it disappears, as defined in Section 2 and Fig. 4. 
Depending on the speed of the car, the number of frames 
in a scene varies. The size of the sign also varies and 
gradually increases between adjacent frames as the vehicle 
gets closer to the sign. Lighting conditions for the same 
sign also change, depending on the distance and angle 
between the sign and the camera, as shown in Fig. 21. The 
dataset also includes signs with different recognition 
difficulties, depending on the weather and light conditions. 

6.1.2 Dataset Taken in Germany 
The German Traffic Sign Detection Benchmark 

(GTSDB) dataset [25], which includes 900 individual 
traffic images of 1360×800 pixels, is originally used for 
sign detection contest purposes with machine learning. 
Since we aim for two-digit speed traffic sign recognition, 
we created a sub-GTSDB dataset by taking all frames that 
contain two-digit speed traffic signs. The sub-GTSDB has 
255 frames at 1360×800 pixels, as shown in Figs. 22 and 
23. “Scene” is not applicable to this dataset because it 
contains individual frames only. Sizes of the speed limit 
signs range from 14×16 pixels to 120×120 pixels. Color 

images are converted to grayscale images before testing.  

6.2 Simulation Results and Discussion 

6.2.1 Number of Speed Sign Candidates 
Detected in RPM and CD, and 
Processing Time for NR 

Table 2 shows the number of traffic sign candidates 
detected by the RPM module and the number of speed 
traffic sign candidates detected by the CD module in one 
frame under various conditions. The full HD input image 
is down-sampled to match the designed 640×360 pixel 
resolution. On average, the number of candidates detected 
by the RPM module is 118, and the number of candidate 
detected after CD is 96 for night time. CD helps to reduce 
the maximum to 51 speed traffic sign candidates. This is 
not a big number, but it helps to remove complicated cases 
for NR, in which random noise in QR code form and 
Japanese kanji are taken as speed sign candidates by RPM. 

The number of SLT sign candidates can also be 
reduced by applying region of interest, because the SLT 
sign appears in the input image in a known area, as shown 
in Fig. 24 (in Japan). We can concentrate on the SLT sign 
candidates detected in this area only to reduce processing 
time for NR. 

The time needed to raster scan one frame is 
640×360=230,400 clock cycles. In the worst case scenario, 
when the speed limit traffic sign candidate is as big as 
50×50 pixels, the NR module needs two clock cycles for 

Fig. 21. Adjacent frames of the same sign under backlit 
condition: left: undetectable; right: detectable. 

 
Table 1. Datasets for accuracy evaluation with various 
lighting, weather, and camera conditions taken in 
Japan. 

Condition Camera Resolution  
[pixels] 

No. of 
Frames 

No. of
Scenes

Daytime 1 
(Japan) 

Grayscale 
Cam *1 

640×390  
(Original) 41,120 60 

1920×1080 
(Original) 40,000 65 

Daytime 2 
(Japan) 

Video  
Cam *2 640×360 

(down-
sampling) 

40,000 65 

1920×1080 
(Original) 39,136 25 

Clear Night   
(Japan) 

Video  
Cam *2 640×360 

(down-
sampling) 

39,136 25 

1920×1080 
(Original) 66,880 44 

Rainy Night 
(Japan) 

Video  
Cam *2 640×360 

(down-
sampling) 

66,880 44 

*1: 60 fps gray scale camera (640 x 390 pixels). 
*2: 60 fps interlace Full HD color camera. 

 

Sign size = 64x64 Sign size = 55x55 Sign size = 75x75

Fig. 22. Dataset (single frame) in German. 
 

Fig. 23. German frames at day and night times in 
grayscale. Both are detectable and recognizable. 

 
Table 2. Number of candidates and effectiveness of 
Circle Detection. 

No. of sign 
candidates 

No. of speed   
sign candidates 

Effectiveness  
of CD Conditions

Best Avg. Best Avg. Best Avg.
Daytime 

(640×390) 200 118 168 109 32 9 

Night time 
(640×360) 403 109 352 96 51 13 

 



IEIE Transactions on Smart Processing and Computing, vol. 4, no. 4, August 2015 

 

247

one line of data reading and processing [18], and so 100 
clock cycles for number candidate processing. Hence, 
during 230,400 clock cycles used in RPM, NR can process 
2,304 speed sign candidates, which is more than the 
number of speed sign candidates detected by RPM and CD. 
The available time (230,400 clock cycles) is enough for all 
SLT sign candidate recognition in the pipeline implemen-
tation in Fig. 12. 

6.2.2 Optimization of SW Sizes and Scan Step 
Fig. 25 shows the cover of one scan window size over 

the others. A small SW size, such as 20×20 pixels and 
21×21 pixels cannot cover the others as well as be covered 
by the others. However, the cover size of a SW size is 
gradually increased, such that SW size of 23×23 pixels can 
cover SW size of 22×22 pixels, and a scan window size of 
34×34 can cover a range from 32×32 to 41×41. The red 
lines show the coverable area for all SW sizes. Blue points 
show the SW sizes that are covered by other SW sizes, 
while the yellow points show the points in which data is 
not available in the dataset. It suggests that not all scan 
window sizes are necessary for implementation. Some 
scan window sizes with less detectable and recognizable 
areas of SLT sign can be removed. In our simulation, 14 
scan window sizes (20, 21, 23, 24, 26, 28, 30, 32, 34, 36, 
38, 42, 46, and 50) are enough for sign detection without 
reduction in accuracy. 

When the scan window moves one pixel, change in the 
scan area is significant for small scan window sizes, such 
as 20×20 (a 5% change, because one row or one column of 
the SW is replaced), but this change is minor for big scan 
window sizes, such as 50×50 (a 2% change). Hence, scan 
step can be a variable depending on the SW size. Making 
the scan step variable reduces the number of candidates 
that need to be processed in the CD and NR stages, as 
shown in Fig. 26, in which the number of speed sign 
candidates is reduced from 112 to 38 with no impact on 
detection accuracy. SLT sign recognition accuracy in Fig. 
27 shows that when the SLT sign size is bigger than 23×23 
pixels, the recognition rate gets to 100%, and so, some SW 
sizes can be removed to save hardware resources with no 
reduction in accuracy. 

6.3 Hardware Implementation Results 
and Processing Ability 

Table 3 shows the hardware implementation resources 
and frequency for RPM, CD and related modules in speed 
limit traffic sign candidate detection. Two implementations 
with different FIFO approaches are given. 

The first implementation utilizes flip-flops available 
inside slices of the Xilinx FPGA to build FIFO stacks and 
shift registers that are required in Figs. 17 and 20. Due to 
the small number of registers available inside each slice, 
the implementation with all 31 SW sizes in the proposed 
range (20×20 to 50×50) utilizes 68,552 slice LUTs (128%) 
and cannot fit the target FPGA. Reducing the number of 
SW sizes to 14 (20, 21, 23, 24, 26, 28, 30, 32, 34, 36, 38, 
42, 46, and 50) significantly reduces the required resources, 

Non traffic sign area

 

Fig. 24. Appearance area of SLT sign in Japan. 
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Fig. 25. Cover of each scan window size. Red marks
picked up SW sizes for best hardware and accuracy
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(a) 112 speed sign candidates detected with scan step = 1

(b) 38 speed sign candidates detected with variable scan 
step  

Fig. 26. Effectiveness of variable scan step. 
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making it implementable on the target FPGA at a 
frequency of 202.2 MHz. This maximum frequency 
guarantees that over 60 full HD frames can be processed 
for sign detection in one second. 

The second implementation utilizes the memory inside 
the LUT in SLICEM to generate a 32-bit shift register 
without using the flip-flops available in a slice. Since the 
size of the FIFO stack and shift registers required in Figs. 
17 and 20 is not too big, the shift register generated by the 
memory inside the LUTs is applicable. Since the amount 
of memory inside the LUTs in a slice is much larger than 
the number of flip-flops inside a slice, this approach 
significantly reduces the required resources to 43,246 
(81.3%) slice LUTs if all 31 SW sizes are implemented. 

This number reduces to 18,154 (34.1%) slice LUTs if 14 
SW sizes are implemented. Fewer required computational 
resources also increases the maximum frequency for the 
detection module to 321.9 MHz, compared with 202.2 
MHz achieved by the first one. 

6.4 Comparison with Related Works 
In terms of speed limit traffic sign candidate detection, 

our method achieves 100% accuracy. When number 
recognition is included, the accuracy of the proposed speed 

(a) Detection accuracy  on local road by SW size

(b) Detection accuracy  on highway by SW size
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Fig. 27. Speed sign recognition accuracy by SW size.
 

Table 3. Hardware resources and latency. 

All SW sizes 
(20×20~ 50×50) 14 SW sizes* 

 
# slice 

registers 
# slice 
LUTs 

Freq. 
(MHz) 

# slice 
registers 

# slice 
LUTs

Freq. 
(MHz)

RPM 19,763 34,189 202.2 8,289 14,394 202.2
CD 26,669 34,363 390.3 11,061 14,437 390.3

Reg. 
based 
FIFO Total 46,432 

(43.6%) 
68,552 
(128.9%) 202.2 19,350 

(18.2%) 
28,831 
(54.2%) 202.2

RPM 13,951 28,391 321.9 57,704 11,808 321.9
CD 4,232 14,885 390.3 1,755 6,346 390.3

RAM 
based 
shift 
reg. 

FIFO 
Total 18,183 

(17.1%) 
43,246 
(81.3%) 321.9 7,459 

(7%) 
18,154 
(34.1%) 321.9

Controller 
(RPM+CD) 19 350 - 19 350 - 

14 SW sizes*: 20, 21, 23, 24, 26, 28, 30, 32, 34, 36, 38, 42, 46, and 50.
Target device: Xilinx Zynq Automotive Z7020 FPGA. 

- 106,400 slice registers. 
- 53,200 slice LUTs. 

 

 

Table 4. Detection rate and throughput of related works.

Dataset Input image
Scene positive 

recognition      
rate (%) 

Speed 

Daytime 1 
Daytime 2

640×360  
8-bit grayscale

100( 125
125

)  

scenes 

Night,  
Rainy  
night 

Full HD 
8-bit grayscale

100( 69
69

)  

scenes 

> 60 fps 
(Xilinx  

Zynq 7020)

 
Table 5. Detection rate and throughput of related works.

Method Recognition 
rate (%) 

Thpt. 
(fps) Platform Color / 

grayscale
Proposed  
method 

98 (100%*) > 60 fps Zynq* both 

SIFT [15] 90.4 0.7 
Pentium 

D 3.2 GHz
Color 

Hough [4] 91.4 6.7 
Pentium  

4 2.8 GHz
Color 

Random  
forest [20] 

97.2 18~28 - Color 

Neural  
network [14] 

82.0 62.0 Virtex 4 Color 

Fuzzy  
template [6] 

93.3 66.0 
Pentium 

4 3.0 GHz
Color 

Hardware/ 
Software [17] 

- 1.3 Virtex 5 Color 

Multi-Core  
SoC [9] 

- 2.3 Virtex 4 Color 

Hardware/ 
Software [1] 

- 10.4 Zynq 4 Color 

Hardware/ 
Software [3] 

90.0 14.3 Virtex 5 Color 

Multi-scale 
convolutional 
network [22] 

98.6 NA  Color 

Multi-column 
deep neural 

network [21] 
99.5 NA GPU 512 

core Color 

100%* : achieved 100% accuracy with contrast adjustment. 
NA : not applicable due to traffic sign recognition only. 
Zynq* : Xilinx Automotive Zynq 7020 FPGA. 
Virtex : Xilinx Virtex FPGA. 
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limit traffic sign detection and recognition system is 98% 
if no contrast adjustment is applied to the rainy night 
scenes. With simple contrast adjustment, accuracy in speed 
limit sign detection and recognition increases to 100%, 
even under difficult conditions such as rainy nights, as 
shown in Table 4. 

Table 5 shows the accuracy and throughput of related 
works. In comparison with other available research, our 
system gets a higher precision rate and higher throughput 
than all others. It also requires fewer hardware resources 
than the others, and so is implementable on a low-cost 
automotive-oriented Xilinx Zynq 7020 FPGA, whereas the 
others require a PC or high-end, and high-cost FPGAs, 
such as the Xilinx Virtex 4 or Virtex 5, in their implemen-
tations. 

6.5 Function Extendibility 
In terms of application, the rectangle pattern–matching 

algorithm can directly apply to other sign detections aside 
from the rectangle shape, such as the circle and octagon 
shapes, as shown in Fig. 28. These three shapes have the 
same global location and luminosity features, and so we 
can roughly recognize the ROI for those signs before 
dividing them into the correct shape based on their local 
features. The algorithm can also extend to other shapes, 
such as the triangle and hexagon. Depending on the shape 
of the target sign border, we need to change the location of 
black and white area computation. 

7. Conclusion 

This paper introduces our novel algorithm and 
implementation for speed limit traffic sign candidate 
detection using simple features of speed limit traffic signs 
in a grayscale-image (area luminosity, local pixel direction, 
area histogram) combination. By using grayscale images, 
our approach overcomes training and color dependence 
problems, which reduce recognition accuracy in unlearned 
conditions when color has changed, compared to other 
research. The proposed algorithm is robust under various 
conditions, such as during the day, at night, and on rainy 
nights, and is applicable to various platforms, such as color 
or grayscale cameras, high-resolution (4K) or low-
resolution (VGA) cameras, and high-end or low-end 
FPGAs. The combination of coarse- and fine-grain pipeline 
architectures using results-sharing on overlap, application 
of a RAM-based shift register, and optimization of scan 
window sizes provides a small but high-performance 
implementation. Our proposed system achieves better than 
98% recognition accuracy, even in difficult situations, such 

as rainy nights, is able to process more than 60 full HD fps, 
and is implementable on the low-cost Xilinx automotive-
oriented Zynq 7020 FPGA. Therefore, it is applicable in 
real life. In the future, a full speed limit traffic sign 
recognition system will be implemented and verified on an 
FPGA. Extension to LED signs and other countries’ speed 
limit sign recognition, as well as other traffic sign detec-
tion, will be done. 
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