• 제목/요약/키워드: wind-tunnel measurement

검색결과 186건 처리시간 0.022초

관내 분무액적의 유동특성에 관한 실험적 연구 (An Experimental Study on the Dynamic Behavior of Spray Droplets in the Wind Tunnel)

  • 박대식;최혁준;박상균;김명환;오철;윤석훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.95-100
    • /
    • 2002
  • This study was experimentally performed to investigate flow characteristics of spray droplets in the wind tunnel. Behavior of the spray droplets in the pipe was observed and the deposition rate of droplets on the surface of pipe as liquid film was measured. The experiments were carried out for a variety of parameter, such as velocity of feed air, spray angle of nozzle, and diameter of droplet. From the visual observation of the spray droplets in the pipe and the measurement of deposition rate on the pipe, the general understanding of droplets behavior for desuperheater was provided.

  • PDF

회전발사체 롤댐핑 특성에 관한 고속 유동장 실험연구 (An Experimental Study on Roll-Damping Characteristics of a Spinning Projectile at High Speed Region)

  • 오세윤;이도관;김성철;김상호;안승기
    • 한국항공우주학회지
    • /
    • 제39권10호
    • /
    • pp.912-918
    • /
    • 2011
  • 본 연구의 목적은 풍동실험을 통해 회전발사체에서 발생하는 동적 롤댐핑 특성을 실험적으로 측정하는데 있었으며, 이를 위해 약 12,000 rpm으로 회전하는 회전발사체 실험모형에 작용하는 롤댐핑 특성의 측정을 위한 고속풍동실험을 국방과학연구소 삼중음속풍동에서 수행하였다. 실험시의 마하수는 0.7~1.05까지의 천음속 영역이었으며 이때의 받음각 구간은 -4~+10 deg이었다. 풍동실험 측정기법의 유효성 평가를 위해 동일형상 모형에 대해 기 수행하였던 롤댐핑 측정결과와의 비교검토를 수행하였다.

다점식 피토관의 효율적인 교정에 대한 연구 (Investigation on the Effective Calibration of Annubar)

  • 최용문;최해만;최지철;홍경기;한상우;김웅선;전세종
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.373-380
    • /
    • 2006
  • Annubar is one of popular tools to measure the exhausted gas flow rate from the stacks. For the accurate monitoring of the amount of discharged pollutants, calibration of annubar is very important. Calibration of annubar has been carried out in a wind tunnel. When the length of annubar is longer than the test section size of wind tunnel, it is very difficult to find out typical value of annubar coefficients. So, a measurement technique to calibrate annubar longer than the size of the test section of wind tunnel must be developed. In the present study, an experiment is performed to measure the annubar coefficients in such a limited size of the wind tunnel. The experimental annubar coefficient by using a partial blocking technique is very close to the annubar coefficient of normal condition.

국방과학연구소 Ludwieg Tube 풍동설비 성능개량 연구 (A Study on the Wind Tunnel Facility Performance Improvement of ADD Ludwieg Tube)

  • 마상준
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.118-125
    • /
    • 2023
  • 풍동시험은 유도무기체계 개발에 있어서 필수적인 과정 중 하나이며, 시험 조건 및 용도에 따라 다양한 풍동설비가 존재한다. Ludwieg Tube는 극초음속 유도무기 체계개발에서 매우 유용하며, 고 받음각 시험 및 풍동시험 결과의 반복성, 일관성이 필요한 가운데 풍동시험 설비의 능력보강이 필요하였다. 본 논문에서는 국방과학연구소 Ludwieg Tube가 가졌던 문제점과 노즐, 진공탱크 및 모형지지부 성능개량을 통한 문제해결 방안을 제시하고 풍동시험 간 압력 측정 결과를 바탕으로 해결 방안을 증명하였다.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

상용 프로펠러 공력 데이터베이스 구축을 위한 실험적 연구 (An Experimental Study for Construction of Aerodynamic Database of the Commercial Propeller)

  • 심호준;김건홍;천혜진
    • 항공우주시스템공학회지
    • /
    • 제15권5호
    • /
    • pp.60-71
    • /
    • 2021
  • 상용 프로펠러의 추력과 토크를 측정하기 위한 성능시험 장치를 고안하였으며, 30인치급 3가지 프로펠러에 대한 성능시험을 수행하였다. 프로펠러 추력과 토크 측정을 위해 모터, 프로펠러와 연결된 6분력 발란스를 적용하였으며, 풍동 저울 교정 장비를 이용하여 측정 시스템의 확인을 수행하였으며, QTP 프로펠러를 적용하여 구축한 성능시험 장치의 검증 시험도 수행하였다. 제자리 비행 조건에서 상용 프로펠러의 제작사에서 제공하는 사양과 시험 결과를 비교하였으며, 추력 및 토크에서 차이가 있음을 확인하였다. 받음각, 프로펠러 형상, 풍속을 변경시켜가며 프로펠러 성능을 측정하였으며, 각 프로펠러에 대해 RPM에 따른 프로펠러 추력 계수로 나타내었다. 저 받음각과 고 받음각에서 경향이 다르게 나타남을 확인하였으며, 차후 공중용 무인이동체 공력 설계에 활용 가능한 공력 데이터베이스를 확보하였다.

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.

아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계 (Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade)

  • 김동건;김문경;차득근;윤순현
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Extrapolation of wind pressure for low-rise buildings at different scales using few-shot learning

  • Yanmo Weng;Stephanie G. Paal
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.367-377
    • /
    • 2023
  • This study proposes a few-shot learning model for extrapolating the wind pressure of scaled experiments to full-scale measurements. The proposed ML model can use scaled experimental data and a few full-scale tests to accurately predict the remaining full-scale data points (for new specimens). This model focuses on extrapolating the prediction to different scales while existing approaches are not capable of accurately extrapolating from scaled data to full-scale data in the wind engineering domain. Also, the scaling issue observed in wind tunnel tests can be partially resolved via the proposed approach. The proposed model obtained a low mean-squared error and a high coefficient of determination for the mean and standard deviation wind pressure coefficients of the full-scale dataset. A parametric study is carried out to investigate the influence of the number of selected shots. This technique is the first of its kind as it is the first time an ML model has been used in the wind engineering field to deal with extrapolation in wind performance prediction. With the advantages of the few-shot learning model, physical wind tunnel experiments can be reduced to a great extent. The few-shot learning model yields a robust, efficient, and accurate alternative to extrapolating the prediction performance of structures from various model scales to full-scale.