• Title/Summary/Keyword: wind-speed change

Search Result 377, Processing Time 0.032 seconds

Parametric Study of the Effects of Train Wind on Turnover Safety (차량 전복 안전성에 끼치는 열차 풍압의 파라메타 연구)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.961-966
    • /
    • 2009
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. We conducted the parametric study of the effects of train wind on the running stability.

A Study on Driving Characteristics of Power Compensation Discontinuity Energy Occurrence System (탄성에너지를 이용한 전력보상 불연속에너지발생시스템의 운전특성에 관한 연구)

  • Park, Se-Jun;Lim, Jung-Yeol;Yoon, Suk-Am;Gang, Byeong-Bog;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.622-626
    • /
    • 2002
  • Combined generation system of photovoltaic and wind power is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually, because the energy source is changeable and stable through change of weather as irradiation, temperature, wind speed, wind speed, wind direction, seasons, etc..

  • PDF

A Study on Driving Characteristics of Power Conpensation Device using elasticit (탄성에너지를 이용한 전력보상장치의 운전특성에 관한 연구)

  • Park, Se-Jun;Kang, Byung-Bog;Lim, Jung-Yeol;Yoon, Jeong-Phil;Cho, Kyung-Jae;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.235-239
    • /
    • 2002
  • Combined generation system of photovoltaic and wind power is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually, because the energy source is changeable and stable through change of weather as irradiation, temperature, wind speed, wind speed, wind direction, seasons, etc..

  • PDF

Evaluation on Effect of Wind Power Generation System According to Transformer Winding Connection at Matlab&Simulink (MATLAB&SIMULINK에서 변압기 결선에 따른 풍력발전 시스템의 영향 평가)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.772-773
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind power generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Simulation for fault current of wind turbine generating system following transformer winding connection (변압기결선에 따른 풍력발전시스템의 고장전류에 대한 시뮬레이션)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.454-457
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by MARTLB & SIMULINK. The simulation shall be performed by assuming single line to ground fault generated in the system Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

Unsteady aerodynamic force on a transverse inclined slender prism using forced vibration

  • Zengshun Chen;Jie Bai;Yemeng Xu;Sijia Li;Jianmin Hua;Cruz Y. Li;Xuanyi Xue
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.331-346
    • /
    • 2023
  • This work investigates the effects of transverse inclination on an aeroelastic prism through forced-vibration wind tunnel experiments. The aerodynamic characteristics are tri-parametrically evaluated under different wind speeds, inclination angles, and oscillation amplitudes. Results show that transverse inclination fundamentally changes the wake phenomenology by impinging the fix-end horseshoe vortex and breaking the separation symmetry. The aftermath is a bi-polar, one-and-for-all change in the aerodynamics near the prism base. The suppression of the horseshoe vortex unleashes the Kármán vortex, which significantly increases the unsteady crosswind force. After the initial morphology switch, the aerodynamics become independent of inclination angle and oscillation amplitude and depend solely on wind speed. The structure's upper portion does not feel the effect, so this phenomenon is called Base Intensification. The phenomenon only projects notable impacts on the low-speed and VIV regime and is indifferent in the high-speed. In practice, Base Intensification will disrupt the pedestrian-level wind environment from the unleashed Bérnard-Kármán vortex shedding. Moreover, it increases the aerodynamic load at a structure base by as much as 4.3 times. Since fix-end stiffness prevents elastic dissipation, the load translates to massive stress, making detection trickier and failures, if they are to occur, extreme, and without any warnings.

Prediction of Effect on Outside Thermal Environment of Building and Green Space Arrangement by Computational Fluid Dynamic (CFD 시뮬레이션을 이용한 건축물 및 녹지배치가 외부 열환경에 미치는 영향 예측)

  • Kim, Jeong-Ho;Son, Won-Duk;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2012
  • This study forecasts changes in thermal environment and microclimate change per new building construction and assignment of green space in urban area using Computational Fluid Dynamics(CFD) simulation. The analysis studies temperature, humidity and wind speed changes in 4 different given conditions that each reflects; 1) new building construction; 2) no new building construction; 3) green spaces; and 4) no green spaces. Daily average wind speed change is studied to be; Case 2(2.3 m/s) > Case 3. The result of daily average temperate change are; Case 3($26.5^{\circ}C$) > Case 4($24.6^{\circ}C$) > Case 2($23.9^{\circ}C$). This result depicts average of $2.5^{\circ}C$ temperature rise post new building construction, and decrease of approximately $1.8^{\circ}C$ when green space is provided. Daily average absolute humidity change is analysed to be; Case 3(15.8 g/kg') > Case 4(14.1 g/kg') > Case 2(13.5 g/kg'). This also reveals that when no green spaces is provided, 2.3 g/kg' of humidity change occurs, and when green space is provided, 0.6 g/kg change occurnd 4(1.8 m/s), which leads to a conclusion that daily average wind velocity is reduced by 0.5 m/s per new building construction in a building complex.

A Study on the Diurnal Change of Pinus rigida Pollen Deposition in Mt. Kwan-ak (공중에 비산하는 Pinus rigida 화분의 일변화량)

  • Chang, Nam-Kee;Jae-Geun Kim
    • The Korean Journal of Ecology
    • /
    • v.11 no.4
    • /
    • pp.193-200
    • /
    • 1988
  • The amount of Pinus rigida pollen deposition was hourly measured by Durhan's pollen trap in Seoul National University during May 9∼16 o'clock and 9∼15, 1988. The peak times or pollen deposition were 9∼10 o'clock and 16∼17 o'clock. The correlation coefficients between pollen deposition and mean temperature, relative humidity, and wind speed were 0.625, -0.655 and 0.418 respectively, It is thought that pollen maturation rate is correlated with mean temperature and the pollen deposition with increasing wind speed.

  • PDF

A Study of Aerodynamical Effects on the Distance between Track Center of High Speed Train(I) (고속철도 선로중심 간격에 끼치는 공력 영향에 관한 연구(I))

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.129-134
    • /
    • 2007
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed may bring about the effect of cost savings. When, however, considering the influence that the increase of wind pressure due to the change of the distance between track centers may have on the stability of train operation, extensive technical review and overall studies need to be performed before the distance between track centers is determined. Therefore, in this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. In this study, we estimated the aerodynamical effects by the results of the real train experiments.

  • PDF

Computational Flow Analysis on Wind Profile Change Projected to a Wind Turbine Behind Saemangeum Seawall (새만금 방조제에 의한 풍력터빈 입사풍 변화의 전산유동해석)

  • Woo, Sang-Woo;Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Jeollabuk-do has announced a future plan for the Saemangeum Wind Farm which includes the installation of fourteen wind turbines in a single line, located 500m back from the Saemangeum Seawall. It is anticipated as a positive effect that, for sea breeze blowing toward land, the average wind speed could be accelerated and the wind speed distribution could be uniformized by dint of the seawall, an upstream structure of the turbines. At the same time it is also anticipated as a negative effect that the strength of wind turbulence could be increased due to the flow separation generated at the back end of the seawall. According to the results of the computational fluid dynamics analysis of this paper, it has been observed that, at the 50m zone on the road surface located at the uppermost part of the Saemangeum Seawall, the average wind speed has been accelerated by approximately 6~7% and that wind shear has been decreased by 70%, but this positive effect disappears in the zone situated beyond the 100m from the back end of the seawall. It has also been observed that flow separation exists to a limited extent only below the bottom of the blade-sweeping circle and, furthermore, does not extend very far downstream of the wind. As a conclusion, it can be said that the seawall neither positively nor negatively affects the proposed Saemangeum Seawall Wind Farm layout.