• Title/Summary/Keyword: wind-loading

Search Result 428, Processing Time 0.029 seconds

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade (10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구)

  • Kim, Soo-Hyun;Shin, Hyungki;Bang, Hyung-Joon
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

Shape Optimization for a Jaw Using Design Of Experiments (실험계획법을 이용한 조(Jaw)의 형상최적설계)

  • Bang, Il-Kwon;Kang, Dong-Hun;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.685-690
    • /
    • 2006
  • The rail clamp is the device to prevent that a crane slips along rails due to the wind blast as well as to locate the crane in the set position for loading and unloading containers. The wedge typed rail clamp should be designed to consider the structural stability and the durability because it compresses both rail side with large clamping force by the wedge working as the wind speed increases. In this research, the design of experiments(DOE) and the variation technology(VT) built in ANSYS WORKBENCH are utilized to determine the optimum shape of a jaw. The optimum results obtained by two methods are compared and examined.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Dynamic Analysis for the Mooring Safety at KwangYang Port (광양 제품부두의 계류안정성 해석)

  • Kim, Young-Bok;Jeong, Tae-Gweon;Kim, Se-Won;Kim, Jung-Yeop;Kim, Young-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.423-428
    • /
    • 2010
  • This study is aiming to find one of reasonable guidelines to select a proper berthing ship at Kwang Yang harbors for loading/unloading for the POSCO(Pohang Steel Co. Ltd.). For dynamic analysis for the moored ships, the selection of subjected vessels has to be given the priority, so that the motion characteristics are figured out. The calculation of the dynamic fluid forces and wave, wind and current forces in time domain are followed. Then, the dynamic mooring analyses are performed. This study might contribute to make a new guideline by which the proper sized and loaded ships could be moored safety at the berths of Kwang Yang Harbor.

Shape Optimization for a Jaw Using DOE (실험계획법을 이용한 조(Jaw)의 형상최적설계)

  • Lee Kwon-Hee;Bang Il-Kwon;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.331-336
    • /
    • 2006
  • The rail clamp is the device to prevent that a crane slips along rails due to the wind blast as well as to locate the crane in the set position for loading and unloading containers. The wedge type rail clamp should be designed to consider the structural instability and the durability because it compresses both rail side with large clamping force by the wedge working as the wind speed increases. In this research, there are two methods which are design of experiment and variation technology in used commercial software and shape optimization was performed. The optimum results obtained by the two methods are compared and examined.

  • PDF

Comparison of Fatigue Damage Models of Spread Mooring Line for Floating Type Offshore Plant (부유식 해양플랜트 다점 계류라인의 피로손상모델 비교)

  • Park, Jun-Bum;Kim, Kookhyun;Kim, Kyung-Su;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.63-69
    • /
    • 2013
  • The mooring lines of a floating type offshore plant are known to show wide banded and bimodal responses. These phenomena come from a combination of low and high frequency random load components, which are derived from the drift-restoring motion characteristic and wind- sea, respectively. In this study, fatigue models were applied to predict the fatigue damage of mooring lines under those loads, and the result were compared. For this purpose, seven different fatigue damage prediction models were reviewed, including mathematical formula. A FPSO (floating, production, storage, and offloading) with a $4{\times}4$ spread catenary mooring system was selected as a numerical model, which was already installed at an offshore area of West Africa. Four load cases with different combinations of wave and wind spectra were considered, and the fatigue damage to each mooring line was estimated. The rain flow fatigue damage for the time process of the mooring tension response was compared with the results estimated by all the fatigue damage prediction models. The results showed that both Benasciutti-Tovo and JB models could most accurately predict wide banded bimodal fatigue damage to a mooring system.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra (광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구)

  • Park, Jun-Bum;Kang, Chan-Hoe;Kim, Kyung-Su;Choung, Joon-Mo;Yoo, Chang-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.