• 제목/요약/키워드: wind-induced vibration characteristics

검색결과 89건 처리시간 0.031초

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

풍력발전기 로터 블레이드의 공력탄성학적 현상 (Aeroelastic Phenomena of a Wind Turbine Rotor Blade)

  • 배재성;황재혁;주영철
    • 한국태양에너지학회 논문집
    • /
    • 제28권1호
    • /
    • pp.25-32
    • /
    • 2008
  • Aeroelastic phenomena of a wind turbine include stall-induced vibrations and classical flutters. The classical flutter occurs due to coalescence between bending mode and torsion mode. It is typically the aeroelastic instability of an aircraft wing. Different from the classical flutter, the stall-induced vibration is the instability in lead-lag mode due to negative aerodynamic dampings. In the present study, the three degree of freedom aeroelastic model of a wind turbine blade is introduced to characterize and analyze its aeroelastic phenomena. The numerical results show that the aeroelastic stability of flap-lag motion is more unstable than that of flap-pitch motion and the aeroelastic characteristics of lead-lag motion can become unstable as wind speed increases.

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

On the modeling methods of small-scale piezoelectric wind energy harvesting

  • Zhao, Liya;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.67-90
    • /
    • 2017
  • The interdisciplinary research area of small scale energy harvesting has attracted tremendous interests in the past decades, with a goal of ultimately realizing self-powered electronic systems. Among the various available ambient energy sources which can be converted into electricity, wind energy is a most promising and ubiquitous source in both outdoor and indoor environments. Significant research outcomes have been produced on small scale wind energy harvesting in the literature, mostly based on piezoelectric conversion. Especially, modeling methods of wind energy harvesting techniques plays a greatly important role in accurate performance evaluations as well as efficient parameter optimizations. The purpose of this paper is to present a guideline on the modeling methods of small-scale wind energy harvesters. The mechanisms and characteristics of different types of aeroelastic instabilities are presented first, including the vortex-induced vibration, galloping, flutter, wake galloping and turbulence-induced vibration. Next, the modeling methods are reviewed in detail, which are classified into three categories: the mathematical modeling method, the equivalent circuit modeling method, and the computational fluid dynamics (CFD) method. This paper aims to provide useful guidance to researchers from various disciplines when they want to develop and model a multi-way coupled wind piezoelectric energy harvester.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

소형 풍력발전기를 이용한 교량의 공력성능 개선 및 에너지 생산 (Aerodynamic Retrofit of Bridge and Energy Harvesting by Small Wind Turbines)

  • 권순덕;이승호;이한규
    • 대한토목학회논문집
    • /
    • 제30권1A호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 연구에서는 소형 풍력발전기를 교량에 설치하여 전력생산과 아울러 내풍안정성을 개선할 수 있는 방안을 연구하였다. 이를 위하여 기존 공기역학적 진동억제 대책과 유사하게 교량에 풍력발전기를 설치하기 위한 방법과 풍력에너지 추정 방법을 제시하였다. 풍동실험 결과를 보면, 페어링처럼 소형 풍력발전기를 설치하면 와류진동을 거의 억제할 수 있는 것으로 나타났고, 이때 교축방향 최적 이격 거리는 터빈 직경의 3-4.5배인 것으로 나타났다. 그리고 풍력발전기를 설치하면 항력계수는 낮아지고 양력계수의 기울기도 음에서 양의 값으로 바뀌어 전반적인 내풍안정성이 향상되는 것으로 나타났다. 한편 풍하측의 풍력발전기는 평균풍속이 낮아 발전을 못하지만, 풍상측의 풍력발전기는 상당량의 전기에너지를 생산하는 것으로 나타났다.

Field measurement of damping in industrial chimneys and towers

  • Cho, K.P.;Tamura, Y.;Itoh, T.;Narikawa, M.;Uchikawa, Y.;Nishimura, I.;Ohshima, Y.
    • Structural Engineering and Mechanics
    • /
    • 제12권4호
    • /
    • pp.449-457
    • /
    • 2001
  • In the design of industrial chimneys and towers, structural engineers must assume a level of the inherent damping in the structures. In order to better estimate the dynamic response of those structures, actual damping was measured from wind-induced vibration signals of chimneys and towers and its characteristics with respect to the response levels, the structural systems, and the wind direction were discussed. Damping ratio and natural frequency for three chimneys and two towers were calculated using random decrement technique.

점탄성감쇠기를 이용한 송전철탑 풍하중의 저감 (Wind Load Mitigation for Transmission Tower using Viscoelastic Damper)

  • 민경원;박지훈;문병욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.