• 제목/요약/키워드: wind vibration control

검색결과 281건 처리시간 0.022초

사장교의 케이블 진동저감을 위한 수동 제어시스템 (Passive Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges)

  • 황인호;이종세
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.881-885
    • /
    • 2006
  • 사장교 케이블은 구조적으로 휨강성과 감쇠력이 작아 풍우에 의해 쉽게 유해진동이 발생한다. 이러한 풍우진동을 저감시키기 위한 효과적인 방법으로 부가댐퍼를 장착하여 케이블의 감쇠력을 증가시키는 제어시스템이 널리 사용되어왔다. 그러나 사장교의 장대화로 인해 구조적으로나 미적으로 충분한 감쇠력을 제공할 수 있는 위치에 부가댐퍼를 장착하기 어렵게 되었다. 그러므로 본 논문은 사장교의 미관을 해치지 않으면서 기존의 제어시스템보다 효과적으로 케이블의 진동을 저감시킬 수 있는 새로운 개념의 제어시스템을 제안하였다. 제안된 시스템은 케이블 앵커리지에 적층고무베어링과 같은 유동이 가능한 장치와 내부댐퍼로 구성되었으며, 제어성능평가를 위해 해석모델을 개발하였다. 제안된 시스템의 제어성능 분석을 위해 수치해석을 수행하였으며 기존의 부가 댐퍼시스템과 진동 저감효과를 비교하였다. 제안된 제어시스템은 기존의 부가댐퍼 시스템 보다 효과적으로 진동을 저감시킬 수 있었으며 사장교 케이블의 풍우진동 저감을 위해 효과적인 시스템으로 사료된다.

MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어 (Mechanical Loads Analysis and Control of a MW Wind Turbine)

  • 남윤수;최한순
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

Pedestrian- and wind-induced bi-directional compound vibration control using multiple adaptive-passive TMD-TLD system

  • Liangkun Wang;Ying Zhou;Weixing Shi
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.415-430
    • /
    • 2024
  • To control vertical and lateral compound vibration simultaneously using an integrated smart controller, passive tuned mass damper (TMD) and tuned liquid damper (TLD) are updated and combined to an adaptive-passive TMD-TLD (AP-TMD-TLD) system. As for the vertical AP-TMD part on top of the vertical spring, it can retune itself through varying the level of liquid in the tank to adjust its mass, while the lateral AP-TLD part at the bottom of the vertical spring can retune itself by changing the level of liquid. Further, for multimodal response control, the multiple AP-TMD-TLD (MAP-TMD-TLD) system is proposed as well. Each AP-TMD-TLD in the system can identify the structural vertical and lateral modal frequencies through the wavelet-transform (WT) based algorithm and retune its vertical and lateral natural frequencies both through adjusting the level of liquid in the AP-TMD and AP-TLD parts respectively. A cantilever cable-stayed landscape bridge which is sensitive to both human-induced and wind-induced vibrations is presented as a case study. For comparison, initial parameters of MAP-TMD-TLD are mistuned. Results show that the presented system can retune its vertical and lateral frequencies precisely, while the retuned system has a better bi-directional compound control effect than the mistuned system before the retuning operation and can improve the serviceability significantly.

유한요소법을 이용한 진동물체의 최적 제어에 관한 연구 (Optimal Control of An Oscillating Body Using Finite Element Methods)

  • 박승진
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.55-61
    • /
    • 2018
  • Long bridges, such as suspension bridges and diagonal bridges, are complex phenomena that show different behaviors depending on the shape and rigidity of the cross sections, such as wind vibrations and liquid vibrations from earthquakes in liquid storage containers. This is called the lower skirt on the lower side of the bridge, and the installation of lower skirt is effective for release and vortex vibrations caused by rapid winds, and that increases the stability of the wind resistance of the bridge. Optimal shape and installation of the lower skirt is also essential to make maximum wind speed effect of the lower skirt. Therefore, this study proposes a numerical analysis method to control the vibration of a bridge by calculating the optimal installation angle of an optimal lower skirt according to the optimal control theory and this study evaluates the impact on the optimal control system by minimizing the dominance equation with an evaluation function,which is an indicator for evaluating the optimal control theory state.

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

An integrator based wind speed estimator for wind turbine control

  • Elmaati, Younes Ait;El Bahir, Lhoussain;Faitah, Khalid
    • Wind and Structures
    • /
    • 제21권4호
    • /
    • pp.443-460
    • /
    • 2015
  • In this paper, an integrator based method to estimate the effective wind speed in wind turbine systems is proposed. First, the aerodynamic torque was accurately estimated through a proportional gain based observer where the generator speed is the measured output of the system. The torque signal contains not only useful frequencies of the wind, but also high frequencies and the ones due to structural vibration. The useful information of the wind signal is low frequency. A spectral analysis permitted the determination of the useful frequencies. The high frequencies were then filtered before introducing the torque signal in the wind speed observer. The desired effective wind speed was extracted through an integrator based observer using the previously estimated aerodynamic torque. The strength of the method is to avoid numerical solutions used in literature of the wind speed estimation. The effectiveness of the proposed wind speed estimator and its use to control the generator speed has been tested under turbulent situations using the FAST software (Fatigue, Aerodynamics, Structures, and Turbulence), for large scale Megawatt turbine.

Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building

  • Wang, Qinhua;Qiao, Haoshuai;Li, Wenji;You, Yugen;Fan, Zhun;Tiwari, Nayandeep
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.241-253
    • /
    • 2020
  • The inerter-based vibration absorber (IVA) is an enhanced variation of Tuned Mass Damper (TMD). The parametric optimization of absorbers in the previous research mainly considered only two decision variables, namely frequency ratio and damping ratio, and aimed to minimize peak displacement and acceleration individually under the excitation of the across-wind load. This paper extends these efforts by minimizing two conflicting objectives simultaneously, i.e., the extreme displacement and acceleration at the top floor, under the constraint of the physical mass. Six decision variables are optimized by adopting a constrained multi-objective evolutionary algorithm (CMOEA), i.e., NSGA-II, under fluctuating across- and along-wind loads, respectively. After obtaining a set of optimal individuals, a decision-making approach is employed to select one solution which corresponds to a Tuned Mass Damper Inerter/Tuned Inerter Damper (TMDI/TID). The optimization procedure is applied to parametric optimization of TMDI/TID installed in a 340-meter-high building under wind loads. The case study indicates that the optimally-designed TID outperforms TMDI and TMD in terms of wind-induced vibration mitigation under different wind directions, and the better results are obtained by the CMOEA than those optimized by other formulae. The optimal TID is proven to be robust against variations in the mass and damping of the host structure, and mitigation effects on acceleration responses are observed to be better than displacement control under different wind directions.

Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges

  • Farhangdoust, Saman;Eghbali, Pejman;Younesian, Davood
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.313-320
    • /
    • 2020
  • The usage of conventional tuned mass damper (TMD) was proved as an effective method for passive mitigating vortex-induced vibration (VIV) of a bridge deck. Although a variety of linear TMD systems have been so far utilized for vibration control of suspension bridges, a sensitive TMD mechanism to wind spectrum frequency is lacking. Here, we introduce a bistable tuned mass damper (BTMD) mechanism which has an exceptional sensitivity to a broadband input of vortex shedding velocity for suppressing VIV in suspension bridge deck. By use of the Monte Carlo simulation, performance of the nonlinear BTMD is shown to be more efficient than the conventional linear TMD under two different wind load excitations of harmonic (sinusoidal) and broadband input of vortex shedding. Consequently, an appropriate algorithm is proposed to optimize the design parameters of the nonlinear BTMD for Kap Shui Mun Bridge, and then the BTMD system is localized for the interior deck of the suspension bridge.