• Title/Summary/Keyword: wind vibration

Search Result 988, Processing Time 0.025 seconds

A Study of Torsional Vibrations of Suspended Bridges (현수교(懸垂橋)의 비틀림진동(振動)에 관한 연구(硏究))

  • Min, Chang Shik;Kim, Saeng Bin;Son, Seong Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1983
  • A method of dynamic analysis is developed for torsional free vibrations of elliptical-box girder type or stiffening truss system suspension bridge. In this study, the method based on a finite element technique using a digital computer, is illustrated by two numerical examples, the Namhae Bridge which is located in Kyungsang nam-do opened on June, 1973, and the Mt. Chunma Bridge is simple span pedestrian's suspension bridge with lateral bracing system in Mt. Chunma, Kyungki-do, are used. In general, dynamic modes of complex suspension bridges are three-dimensional in form, i.e., coupling between vertical and torsional motions. However, introduced that amplitudes of oscillation are infinitesimal for coincidence with the purpose of it's use, thereupon, the torsional vibration analyses are treated without coupling terms. A sufficient number of natural frequencies and mode shapes for torsional free vibration are presented in this paper. In the case of Mt. Chunma Bridge, the natural frequencies and periods are computed with and without reinforcement, respectively, and compared their discrepancies. The influence of the auxiliary reinforcing cables is prevailing in the first few modes, namely, 1st and 2nd in symmetric and 1st, 2nd and 3rd in antisymmetric vibration, and conspicuous in the symmetric compared with the antisymmetric motion, but in the higher modes, this kind of simple accessory elucidates rether converse effects. In the Namhae Bridge, the results are compared with the Manual's obtained by wind tunnel test. It reveals commendable agreement.

  • PDF

The use of SMA wire dampers to enhance the seismic performance of two historical Islamic minarets

  • El-Attar, Adel;Saleh, Ahmed;El-Habbal, Islam;Zaghw, Abdel Hamid;Osman, Ashraf
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.221-232
    • /
    • 2008
  • This paper represents the final results of a research program sponsored by the European Commission through project WIND-CHIME ($\underline{W}$ide Range Non-$\underline{IN}$trusive $\underline{D}$evices toward $\underline{C}$onservation of $\underline{HI}$storical Monuments in the $\underline{ME}$diterranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, the dynamic characteristics of two outstanding Mamluk-Style minarets, which similar minarets were reported to experience extensive damage during Dahshur 1992 earthquake, are investigated. The first minaret is the Qusun minaret (1337 A.D, 736 Hijri Date (H.D)) located in El-Suyuti cemetery on the southern side of the Salah El-Din citadel. The minaret is currently separated from the surrounding building and is directly resting on the ground (no vaults underneath). The total height of the minaret is 40.28 meters with a base rectangular shaft of about 5.42 ${\times}$ 5.20 m. The second minaret is the southern minaret of Al-Sultaniya (1340 A.D, 739 H.D). It is located about 30.0 meters from Qusun minaret, and it is now standing alone but it seems that it used to be attached to a huge unidentified structure. The style of the minaret and its size attribute it to the first half of the fourteenth century. The minaret total height is 36.69 meters and has a 4.48 ${\times}$ 4.48 m rectangular base. Field investigations were conducted to obtain: (a) geometrical description of the minarets, (b) material properties of the minarets' stones, and (c) soil conditions at the minarets' location. Ambient vibration tests were performed to determine the modal parameters of the minarets such as natural frequencies and mode shapes. A $1/16^{th}$ scale model of Qusun minaret was constructed at Cairo University Concrete Research Laboratory and tested under free vibration with and without SMA wire dampers. The contribution of SMA wire dampers to the structural damping coefficient was evaluated under different vertical loads and vibration amplitudes. Experimental results were used along with the field investigation data to develop a realistic 3-D finite element model that can be used for seismic risk evaluation of the minarets. Examining the updated finite element models under different seismic excitations indicated the vulnerability of such structures to earthquakes with medium to high a/v ratio. The use of SMA wire dampers was found feasible for reducing the seismic risk for this type of structures.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Effects of Flow Direction and Consolidation Pressure on Hydraulic Resistance Capacity of Soils (흐름방향과 압밀응력이 지반의 수리저항특성에 미치는 영향)

  • Kim, Youngsang;Jeong, Shinhyun;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.55-66
    • /
    • 2015
  • Big tidal differences, which range from 3.0 m to 8.0 m, exist with regional locations at south and west shores of Korea. Under this ocean circumstance, since a large scour may occur due to multi-directional tidal current and transverse stress of the wind, the scour surrounding the wind turbine structure can make instability of the system due to unexpected system vibration. The hydraulic resistance capacity of soils consolidated under different pressures are evaluated by Erosion Function Apparatus (EFA) under unidirectional and bi-directional flows in this study. It was found that the flow direction change affects significantly on the sour rate and critical shear stress, regardless of soil types while the consolidation pressure affects mainly cohesive soil. Among geotechnical parameters, the undrained shear strength can be well-correlated with the hydraulic resistance capacity, regardless soil type while the shear wave velocity shows the proportional relationships with the hydraulic resistance capacities of fine grained soil and coarse grained soil, respectively.

Finding Optimal Installation Depth of Strong Motion Seismometers for Seismic Observation (지진 관측을 위한 최적 설치심도 조사 방법 연구)

  • Seokho Jeong;Doyoon Lim ;Eui-Hong Hwang;Jae-Kwang Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • We installed temporary strong motion seismometers at the ground surface, 1 m, 2 m, and 9 m at an existing seismic station that houses permanent seismometers installed at 20 m and 100 m, to investigate the influence of installation depth on the recorded ambient and anthropogenic noise level and the characteristics of earthquake signals. Analysis of the ambient noise shows that anthropogenic noise dominates where vibration period T < 1 s at the studied site, whereas wind speed appears to be strongly correlated with the noise level at T > 1 s. Frequency-wavenumber analysis of 2D seismometer array suggests that ambient noise in short periods are predominantly body waves, rather than surface waves. The level of ambient noise was low at 9 m and 20 m, but strong amplification of noise level at T < 0.1 s was observed at the shallow seismometers. Both the active-source test result and the recorded earthquake data demonstrated that the signal level is decreased with the increase of depth. Our result also shows that recorded motions at the ground and 1 m are strongly amplified at 20 Hz (T = 0.05 s), likely due to the resonance of the 3 m thick soil layer. This study demonstrates that analysis of ambient and active-source vibration may help find optimal installation depth of strong motion seismometers. We expect that further research considering various noise environments and geological conditions will be helpful in establishing a guideline for optimal installation of strong motion seismometers.

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

Development Process of Mechanical Structure for a Large Radar (대형 레이더 기계구조부 개발 절차)

  • Shin, Dongjun;Lee, Jonghak;Kang, Youngsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

Study of the Wake Flow Around a Circular Cylinder (단독 원기둥 주위의 후류유동에 관한 연구)

  • Lee, Jaesung;Kim, Sangil;Seung, Samsun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.891-896
    • /
    • 2015
  • This experimental study investigated the wake flow around an elastically supported circular cylinder. In this study, the Reynolds numbers are varied in the region of $1.4{\times}10^4{\leq}Re{\leq}3.2{\times}10^4$. Under these conditions, we have captured the process of the wake mechanism and the moving path of the vortex by measuring the velocity at each position in the wake around the cylinder. Further, these facts from the wind tunnel test are proved by a flow visualization test through a water channel. From the result, we have arrived at the following conclusions : i) The process (formation${\rightarrow}$growth${\rightarrow}$collapse) of vortex is observed in the wake around the cylinder, ii) The vortex efflux angle is approximately $16^{\circ}{\sim}17^{\circ}$ under the experimental conditions. These angles have no relationship with the velocity change and the existence of flow-induced vibrations of the cylinder, and iii) The moving path of the vortex center is obtained by spectrum analysis of the fluctuating velocity behind the cylinder. These are confirmed by conducting visualization tests.

Flow structures around rectangular cylinder in the vicinity of a wall

  • Derakhshandeh, J.F.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.293-304
    • /
    • 2018
  • A numerical study is conducted on the flow characteristics of a rectangular cylinder (chord-to-width ratio C/W = 2 - 10) mounted close to a rigid wall at gap-to-width ratios G/W = 0.25 - 6.25. The effects of G/W and C/W on the Strouhal number, vortex structure, and time-mean drag and lift forces are examined. The results reveal that both G/W and C/W have strong influences on vortex structure, which significantly affects the forces on the cylinder. An increase in G/W leads to four different flow regimes, namely no vortex street flow (G/W < 0.75), single-row vortex street flow ($0.75{\leq}G/W{\leq}1.25$), inverted two-row vortex street flow ($1.25<G/W{\leq}2.5$), and two-row vortex street flow (G/W > 2.5). Both Strouhal number and time-mean drag are more sensitive to C/W than to G/W. For a given G/W, Strouhal number grows with C/W while time-mean drag decays with C/W, the growth and decay being large between C/W = 2 and 4. The time-mean drag is largest in the single-row vortex street regime, contributed by a large pressure on the front surface, regardless of C/W. A higher C/W, in general, leads to a higher time-mean lift. The maximum time-mean lift occurs for C/W = 10 at G/W = 0.75, while the minimum time-mean lift appears for C/W = 2 at the same G/W. The impact of C/W on the time-mean lift is more substantial in single-row vortex regime. The effect of G/W on the time-mean lift is larger at a larger C/W.