• Title/Summary/Keyword: wind velocity/direction

Search Result 251, Processing Time 0.025 seconds

Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance (공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

Wind-Tunnel Simulation on the Wind Fence Effect (방풍망 효과에 대한 풍동 시뮬레이션)

  • Kang, Kun
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.20-26
    • /
    • 1998
  • In establishing artificial fences in a certain locality, type of its area or wind blown against them from the front side is primarily considered. Researchers on fences also concentrate on upstream, wand blown against them from the front side In 90$^{\circ}$ angle. In this research, simulations were carried out on the direction of wind changed by each season, and regardless of seasonal wind, on the fences effect of wind direction on fences, throu호 an atmospheric boondary layer wind tunnel. When I compared the velocity distribution of upstream against the fences in 90$^{\circ}$ angle with that of 75$^{\circ}$, 60$^{\circ}$, and 45$^{\circ}$ respectively, the velocity distribution at downstream of the latter cases generally surpassed that of the former one.

  • PDF

MICROPHONE-BASED WIND VELOCITY SENSORS AND THEIR APPLICATION TO INTERACTIVE ANIMATION

  • Kanno, Ken-ichi;Chiba, Norishige
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.596-600
    • /
    • 2009
  • We are developing a simple low-cost wind velocity sensor based on small microphones. The sensor system consists of 4 microphones covered with specially shaped wind screens, 4 pre-amplifiers that respond to low frequency, and a commercial sound interface with multi channel inputs. In this paper, we first present the principle of the sensor, i.e., technique to successfully suppress the influence of external noise existing in the environment in order to determine the wind velocity and the wind direction from the output from a microphone. Then, we present an application for generating realistic motions of a virtual tree swaying in real wind. Although the current sensor outputs significant leaps in a measured sequence of directions, the interactive animations demonstrate that it is usable for such applications, if we could reduce the leaps to some degree.

  • PDF

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.

A study on wind load characteristics of wind turbines (풍력발전기의 풍하중특성에 관한 연구)

  • Kim, Jung-Su;Park, Noh-Gill;Kim, Young-Duk;Kim, Su-Hyub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.124-129
    • /
    • 2010
  • Wind load characteristics is investigated for vibration analysis of wind turbine gearbox. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. A blast wind model is assumed, of which the maximum velocity is located at the center and the velocity profile is normally distributed. The periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train.

  • PDF

ESTIMATING THE GEOSTROPHIC VELOCITY COMPONENT IN THE SEA SURFACE VELOCITY OBSERVED BY THE HF RADAR IN THE UPSTREAM OF THE KUROSHIO

  • Tokeshi, Ryoko;Ichikawa, Kaoru;Fujii, Satoshi;Sato, Kenji;Kojima, Shoichiro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.672-675
    • /
    • 2006
  • The geostrophic current component is estimated from the sea surface velocity observed by the long-range High-Frequency Ocean Radar (HF radar) system in the upstream of the Kuroshio, by comparing with geostrophic velocity determined from along-track T/P and Jason-1 altimetry data. However, the sea surface velocity of the HF radar (HF velocity) contains not only the geostrophic current but also the ageostrophic current such as tidal current and wind-driven Ekman current. Tidal current component is first extracted by the harmonic analysis of the time series of the HF velocity. Then, the Ekman current is further estimated from daily wind data of IFREMER by applying the least-square method to the residual difference between the HF velocity and the altimetry geostrophic velocity. As a result, the Ekman current in the HF velocity is estimated as 1.32 % of the wind speed and as rotated 45$^{\circ}$ clockwise to the wind direction. These parameters are found almost common in the Kuroshio area and in the Open Ocean. After these corrections, the geostrophic velocity component in the HF velocity agrees well with the altimetry geostrophic velocity.

  • PDF

The Influence of Wind Conditions on the Performance of Smoke Ventilation in High-rise Building Fires (초고층건물 화재시 외기바람이 배연성능에 미치는 영향)

  • Kim, Beom-Gyu;Yim, Chae-Hyun;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • This study examined the effects of the wind conditions, such as wind velocity and wind directions, on the performance of the mechanical smoke exhaust systems for high-rise building fires. A scaled model design and CFD simulations were used to verify the effects both quantitatively and qualitatively. The results showed that the smoke exhaust velocity of the mechanical exhaust system can be reduced by up to 17% at a wind velocity of 5 m/s (equivalent to an outdoor wind speed of 16 m/s) and a wind direction of ${\theta}=5^{\circ}$. In addition, the angle of the outdoor wind direction below ${\theta}=25^{\circ}$ had a significantly influence on the smoke exhaust flow rate and reduced exhaust performance of the smoke exhaust system in a fire.

Wind tunnel modeling of flow over mountainous valley terrain

  • Li, C.G.;Chen, Z.Q.;Zhang, Z.T.;Cheung, J.C.K.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • Wind tunnel experiments were conducted to investigate the wind characteristics in the mountainous valley terrain with 4 simplified valley models and a 1:500 scale model of an existing valley terrain in the simulated atmospheric neutral boundary layer model. Measurements were focused on the mean wind flow and longitudinal turbulence intensity. The relationship between hillside slopes and the velocity speed-up effect were studied. By comparing the preliminary results obtained from the simplified valley model tests and the existing terrain model test, some fundamental information was obtained. The measured results indicate that it is inappropriate to describe the mean wind velocity profiles by a power law using the same roughness exponent along the span wise direction in the mountainous valley terrain. The speed-up effect and the significant change in wind direction of the mean flow were observed, which provide the information necessary for determining the design wind speed such as for a long-span bridge across the valley. The longitudinal turbulence intensity near the ground level is reduced due to the speed-up effect of the valley terrain. However, the local topographic features of a more complicated valley terrain may cause significant perturbation to the general wind field characteristics in the valley.

A summertime near-ground velocity profile of the Bora wind

  • Lepri, Petra;Kozmar, Hrvoje;Vecenaj, Zeljko;Grisogono, Branko
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.505-522
    • /
    • 2014
  • While effects of the atmospheric boundary layer flow on engineering infrastructure are more or less known, some local transient winds create difficulties for structures, traffic and human activities. Hence, further research is required to fully elucidate flow characteristics of some of those very unique local winds. In this study, important characteristics of observed vertical velocity profiles along the main wind direction for the gusty Bora wind blowing along the eastern Adriatic coast are presented. Commonly used empirical power-law and the logarithmic-law profiles are compared against unique 3-level high-frequency Bora measurements. The experimental data agree well with the power-law and logarithmic-law approximations. An interesting feature observed is a decrease in the power-law exponent and aerodynamic surface roughness length, and an increase in friction velocity with increasing Bora wind velocity. This indicates an urban-like velocity profile for smaller wind velocities and rural-like velocity profile for larger wind velocities, which is due to a stronger increase in absolute velocity at each of the heights observed as compared to the respective velocity gradient (difference in average velocity among two different heights). The trends observed are similar during both the day and night. The thermal stratification is near neutral due to a strong mechanical mixing. The differences in aerodynamic surface roughness length are negligible for different time averaging periods when using the median. For the friction velocity, the arithmetic mean proved to be independent of the time record length, while for the power-law exponent both the arithmetic mean and the median are not influenced by the time averaging period. Another issue is a large difference in aerodynamic surface roughness length when calculating using the arithmetic mean and the median. This indicates that the more robust median is a more suitable parameter to determine the aerodynamic surface roughness length than the arithmetic mean value. Variations in velocity profiles at the same site during different wind periods are interesting because, in the engineering community, it has been commonly accepted that the aerodynamic characteristics at a particular site remain the same during various wind regimes.

Retrieval of Remotely Sensed Fluid Velocity and Esimation of Its Accuracy by Eulerian Measurement (오일러 방법으로 원격 측정된 유체운동의 속도 산출과 정확도 평가)

  • Kim, Min-Seong;Lee, Kyung Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.151-156
    • /
    • 2021
  • The speed and direction of the earth's fluid motion is measured by a remote sensing method using electromagnetic waves. Using UHF radar and GPS Sonde, the vertical profile of fluid velocity was calculated by the Euler measurement method and the Lagrange measurement method, respectively. Since the wind direction, which is the direction of motion of the atmosphere, is indicated in the direction of the wind blowing, and a circular value of 0° - 360° is used, it is necessary to pay attention to statistical analysis. Errors caused by calculation conditions are provided, and the corrected accuracy of comparison results is improved by 400%.