• 제목/요약/키워드: wind turbine tower

검색결과 234건 처리시간 0.03초

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석 (Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics)

  • 박광필;차주환;구남국;조아라;이규열
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1489-1495
    • /
    • 2012
  • 본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.

LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발 (The Development of the Monitoring System for Power performance using the Lab View)

  • 고석환;장문석;주영철;이윤섭
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

해상풍력발전용 타워플랜지 소재의 잉고트 파쇄공정설계 (Ingot-Breakdown Design of Tower Flange Material for Offshore Wind Turbine)

  • 유가영;강남현;김정한;홍재근;이종수;이진모;김남용;염종택
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.412-419
    • /
    • 2012
  • The ingot-breakdown scheme of a tower flange material (low-alloy steel) for offshore wind turbine was investigated using finite element (FE) simulations and experimental analyses. Based on compression test results of the low-alloy steel, a deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and Ziegler's instability criterion. The deformation processing map allowed determination of the optimum process conditions for the tower flange material. Within the FE simulations of the ingot breakdown process, the Cockcroft-Latham criterion, which considers ductile fracture, was used to predict the possibility of forming defects during the hot working process. In general, the critical value for the ductile fracture of steel is 0.74. During the ingot-breakdown under optimum process conditions, the actual tower flange forgings exhibited a relatively uniform shape without any forming defects.

풍력발전기의 성능 모니터링 및 하중분석 (Performance Monitoring and Load Analysis of Wind Turbine)

  • 배재성;김성완;윤정은;경남호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

시뮬레이터를 이용한 가변속 풍력발전기 제어시스템 검증 (Verification of The Variable-Speed Wind Turbine Control System by Using the Simulator)

  • 차삼곤;한상열;차종환;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.370-373
    • /
    • 2007
  • For the development of wind turbine, generally simulator is used. Simulator include wind turbine components. e.g blades, pitch and pitching method, rotor, yaw system, tower, drive train and so on. Few the more, it include a external circumstance. e.g wind speed, wind direction, air density. these basic parameters be used for the control of wind turbine by wind turbine controller in wind turbine simulator. The wind turbine controller can be designed in the wind turbine simulator. But a developer must make the real control system that will be made using PLC or PC or other processor. The developer must verify the function of control system. that is control algorithm , I/O function, communication, sequence and so on. This verification is possible if we substitute the real wind turbine control system for wind turbine controller in the simulator.

  • PDF

해상 풍력 발전용 구조물 변화에 따른 고유진동해석 (A Study of Natural Frequency on Offshore Wind Turbine Structural Change)

  • 이강수;이정탁;손충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1008-1016
    • /
    • 2007
  • The purpose of this paper is to investigate the Natural Frequency behavior characteristic of Wind Turbine Tower model, and calculated the stress values of thrust load, wave load, wind load, current load, and gravity load. The offshore Jacket Type Tower which was installed in Vitenam South China Sea is used for the study. Natural frequency and mode shape are calculated with commercial program using the measured vibration. The finite element analysis is performed with commercial F.E.M program(ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어 (Mechanical Loads Analysis and Control of a MW Wind Turbine)

  • 남윤수;최한순
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

Special cases in fatigue analysis of wind turbines

  • Gunes, Onur;Altunsu, Elif;Sari, Ali
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.501-508
    • /
    • 2021
  • The turbine industry demands a reliable design with affordable cost. As technological advances begin to support turbines of huge sizes, and the increasing importance of wind turbines from day to day make design safety conditions more important. Wind turbines are exposed to environmental conditions that can affect their installation, durability, and operation. International Electrotechnical Commission (IEC) 61400-1 design load cases consist of analyses involving wind turbine operating conditions. This design load cases (DLC) is important for determining fatigue loads (i.e., forces and moments) that occur as a result of expected conditions throughout the life of the machine. With the help of FAST (Fatigue, Aerodynamics, Structures, and Turbulence), an open source software, the NREL 5MW land base wind turbine model was used. IEC 61400-1 wind turbine design standard procedures assessed turbine behavior and fatigue damage to the tower base of dynamic loads in different design conditions. Real characteristic wind speed distribution and multi-directional effect specific to the site were taken into consideration. The effect of these conditions on the economic service life of the turbine has been studied.

Upwind형 수평축 풍력발전기의 타워 영향에 의한 블레이드 공력 성능 및 하중 변화에 대한 고찰 (Effect of interaction between blade and tower in upwind type HAWT on blade aerodynamic performance and load)

  • 김호건;신형기;박지웅;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.261-264
    • /
    • 2006
  • This paper describes the effects to wind turbine blade aerodynamics due to interaction between blade and tower on upwind type HAWT. In order to analyze effects of blade-tower interact ion, the analyst s program WINFAS which is based on VLM(Vortex Lattice Method), Free wake and FVE model is used. In this study, the changes of wind turbine blade aerodynamics caused by blade-tower interact ion are Investigated with various parameters windshear, yaw error, TSR and tower diameter.

  • PDF

2MW급 풍력발전기 타워 쉘 최적 설계 (Research for 2MW Wind Turbine Tower Shell Design Optimization)

  • 홍혁수;박진일;방조혁;류지윤;김두훈
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.19-26
    • /
    • 2006
  • Tower shell design is very important because tower takes about 20% of overall wind turbine cost. This paper contains procedure of tower analysis and tower shell thickness optimization concept. Some of requirements like eigenfrequency and buckling evaluated by numerical method. But strength and fatigue can be derived by mathematical method simply. Using this procedure, tower shell thickness can be designed without repetition of complicated calculation.

  • PDF