• Title/Summary/Keyword: wind turbine tower

Search Result 234, Processing Time 0.022 seconds

The study for strength of welds of the wind turbine tower (풍력 발전 시스템 타워의 용접부 강도 연구)

  • Han, Dong-Young;Ahn, Kyung-Min;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.304-307
    • /
    • 2006
  • Recently, as the global warming by fossil fuels and the steep rise of the oil price become social issues, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted because of its economic competitiveness. The tower is one of the main components of wind turbine, which occupying about 20% of overall turbine costs. The tower access door located to base part of the tower, is used to enter the tower. This is the main structural weak points because of door hole, weldment, etc. And so are the weldments between the cans and the flanges. In this study, for the top flange part of the tower, by FEM using ANSYS, we retrieved the maximum von Mises stress on that and carried out fatigue analysis using stresses at such weak points.

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Evaluation of Thrust Dynamic Load under Tower Shadow in Wind Turbine below the Rated Wind Speed (정격풍속 이하에서 풍력터빈의 타워 섀도 추력 동하중 개발)

  • Lim, Chae-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.993-1002
    • /
    • 2022
  • This paper relates to a method of modeling the thrust dynamic load caused by the thrust variation occurring on the blade due to the tower shadow below the rated wind speed. A method that uses thrust coefficient is presented by introducing "tower shadow coefficient of thrust variation". For a 2MW wind turbine, the values of "tower shadow coefficient of thrust variation" are calculated and analyzed at wind speeds below the rated. The dynamic load model of thrust under tower shadow is evaluated in Matlab/Simulink using the obtained "tower shadow coefficient of thrust variation" and thrust coefficient. It shows that the thrust variations acting on the three blades by the tower shadow can be expressed using both the thrust coefficient and the introduced "tower shadow coefficient of thrust variation".

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

A Study on Trends for Development of Wind Turbine Tower (복합재를 이용한 대형 풍력 발전용 타워 기술개발 동향분석)

  • Hong, Cheol-Hyun;Jeong, Jae-Hun;Kang, Byong-Yun;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.50-54
    • /
    • 2012
  • Wind-power generation, which is recently drawing attention as one of renewable energies across the world, has been developed mainly by Europe. As the demand for the wind-power generation rose and the amount of wind-power generation increased, the studies on megawatt-class wind-power system have been active, and the use of composite with such properties as less weight, more strength, anti-corrosion and environment-friendliness has required gradually. In other word, wind turbine tower will be required to be lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine tower. This points squarely toward hybrid/composite tower production growing. It is important to note however that hybrid/composite tower production as it is today is flawed and that there are ways to improve greatly on the performance of these towers in manufacturing process and in their in-service performance. Through this, we have some detail on the current process and its advantage of cost and weight of towers.

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seokhyun;Nam, Y.S.;Eun, Sungyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

Structural monitoring of a wind turbine steel tower - Part I: system description and calibration

  • Rebelo, C.;Veljkovic, M.;da Silva, L. Simoes;Simoes, R.;Henriques, J.
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.285-299
    • /
    • 2012
  • This paper describes the development and calibration of a structural monitoring system installed in a 80 meters high steel wind tower supporting a 2.1 MW turbine Wind Class III IEC2a erected in the central part of Portugal. The several signals are measured at four different levels and include accelerations, strains on the tower wall and inside the connection bolts, inclinations and temperature. In order to correlate measurements with the wind velocity and direction and with the turbine operational parameters the corresponding signals are obtained directly from the turbine own monitoring system and are incorporated in the developed system. Results from the system calibration, the structural identification and the initial period of data acquisition are presented in this paper.

PMSG Wind Turbine Simulation under the consideration of real characteristics (PMSG 풍력 터빈의 특성을 고려한 발전 시스템 시뮬레이션)

  • Sim, Junbo;Kim, Myungho;Park, Kihyeon;Han, Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.182.2-182.2
    • /
    • 2010
  • A various algorism has been studied to extract possibly every energy from a wind turbine in conjunction with the increase of concern about wind power system. In order to verify these control algorism, it is essential to make the most similar conditions to the real wind turbine's environment. Therefore, using separately excited DC motor a wind turbine the most similar to the real turbine is simulated. Tower shadow effect and Wind shear effect are considered as well as inertia emulation. For the control of Back-to-Back Converter Vector current control methods and space vector pulse width modulation are used and for reducing THD of grid current LCL filter is considered. This simulation results verified the energy produced by wind all flows into the utility under the consideration of the characteristics of a wind turbine. The result of this paper is expected to be used as a basic material for analyzing the characteristics of the wind turbine generator.

  • PDF