• Title/Summary/Keyword: wind turbine power generation system

Search Result 206, Processing Time 0.039 seconds

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

A Study on the Assessment of Operational Capacity Limit of Wind Turbine for the Frequency Stability of Jeiu Island System (제주계통 단독운전 시 주파수 안정도 유지를 위한 풍력발전 운전용량 산정 방법에 관한 연구)

  • Hwang, Kyo-Ik;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • As the Kyoto Protocol, which aims at reducing greenhouse gases in accordance to the UNFCCC, came into force, research on environment friendly energy resources has been a matter of concern worldwide. As a general power generation system, among renewable energy resources, that is interconnected and operated with power system, the wind turbine is emerging as an effective alternative. Since power capacity of the wind turbine has been steadily increasing and its relative importance is also increasing in total facility capacity, we cannot ignore its effect. Because controlling generation output in the wind turbine is not as easy as in the synchronous machine due to its facility characteristics and it generates irregular output fluctuations when interconnected with power system, system interconnection was difficult. But the effect of large capacity wind turbine on isolated power system like Jeju island is serious problem on the frequency stability. Accordingly, it is necessary to analyze the effects of wind turbine on system interconnection and assess the optimum capacity of wind turbine that satisfies the most important principle of stable power supply. This paper have analyzed the effects of wind turbine capacity increases on the system and suggested the method of the capacity to achieve its steady operation. And It is applied to the Jeju island.

Modeling of a Variable Speed Wind Turbine in Dynamic Analysis

  • Kim, Seul-Ki;Kim, Eung-Sang;Jeon, Jin-Hong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.51-57
    • /
    • 2004
  • This paper describes the dynamic performance of a variable speed wind turbine system responding to a wide variety of wind variations. Modeling of the wind generation using power electronics interface is proposed for dynamic simulation analysis. Component models and equations are addressed and their incorporations into a transient analysis program, PSCAD/EMTDC are provided. A wind model of four components is described, which enables observing dynamic behaviors of the wind turbine resulting from wind variations. Controllable power inverter strategies are intended for capturing the maximum power under variable speed operation and maintaining reactive power generation at a pre-determined level for constant power factor control or voltage regulation control. The components and control schemes are modeled by user-defined functions. Simulation case studies provide variable speed wind generator dynamic performance for changes in wind speed

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System (복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Choi, Young-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

An Experimental Study for the Performance Analysis of a Vertical-type Wind Power Generation System with a Cross-flow Wind Turbine (횡류형 터빈을 적용한 수직축 풍력발전시스템의 성능평가를 위한 실험 연구)

  • Cho, Hyun-Sung;Chung, Kwang-Seop;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1272-1278
    • /
    • 2014
  • In this experimental study for the current growing offshore wind, a wind tunnel test was conducted to examine the performance of the vertical-type cross-flow wind turbine power generation system. Due to the limited size of the test section of the wind tunnel, the inlet guide vane of the original wind power generation was scaled down to about 1/5 and the turbine impeller diameter was also reduced to 1/2 of the prototype impeller. The number of the impeller blade is another important parameter to the output power of the wind power generation system and the number was varied 8 and 16. From the analysis of the experimental result, the output brake power of the model wind turbine was measured as 278watts with the 16-blade at 12 m/s of the rated wind speed and the rated brake power of the prototype wind turbine is calculated to 3.9kW at the rated operating condition.

Transient Characteristics of Wind Turbine-Generator Connected to a Power System (전력계통 연계 풍력-터빈 발전기의 과도특성)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2966-2970
    • /
    • 2013
  • In this paper, a simulation study on dynamic characteristics of wind turbine generators is performed. The generation of electricity using wind turbines is being recently spotlighted as a renewable way. The wind is an infinite primary energy source. Further, other environmental impacts of wind power are limited as well. Therefore, the wind turbine generation itself has many advantages. However, when generators using wind turbines are connected to the conventional power system, the impact of the power system is different from that of the power system that consists of only synchronous generators, especially in dynamic characteristics. Therefore, it is essential to examine the characteristics of wind turbines in order to ensure reliable wind turbine generation in the power system containing wind turbine generators. In this paper, the dynamic characteristics of GE1.5MW wind turbine are simulated by using PSS/E. In the simulation of GE1.5MW wind turbine, wind speed variation, load change and voltage deviation of infinite bus are considered.

Grid-connected Wind Turbine Generation System Modeling and Simulation Using MATLAB/Simulink (MATLAB/Simulink를 이용한 계통연계 풍력발전 시스템 모델링 및 시뮬레이션)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo;Jang, Moon-Seok;Ko, Seok-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.321-323
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation systems and performs simulation according to increase/decrease of real wind speed. MATLAB/Simulink implemented modeling of grid-connected wind turbine generation system. Terminal voltage, grid voltage, and active/reactive power shall be observed following the performance of simulation.

  • PDF