• Title/Summary/Keyword: wind turbine noise

Search Result 173, Processing Time 0.023 seconds

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유 진동수에 관한 연구)

  • Lee, Jung-Tak;Son, Choong-Yul;Lee, Kang-Su;Won, Jong-Bum;Kim, Sang-Ho;Kim, Tae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.434-438
    • /
    • 2006
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of Wind Turbine Jacket Type Tower model, and calculated that the stress values of Thrust Load, Wave Load, Wind Load, Current Loda, Gravity Load, etc., environment evaluation analysis during static Operating Wind Turbine Jacket Type Tower model, carried out of Natural Frequency analysis of total load case to stress matrix, Frequency calculated that calculated Add Natural Frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유진동수에 관한 연구)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.130-135
    • /
    • 2007
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of wind turbine jacket type tower model, and calculated that the stress values of thrust load, wave load, wind load, current loda, gravity load, etc., environment evaluation analysis during static operating wind turbine jacket type tower model, carried out of natural frequency analysis of total load case to stress matrix, frequency calculated that calculated add natural frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

Structural Dynamics Analyses of a 5MW Floating Offshore Wind-Turbine Using Equivalent Modeling Technique (등가모델링기법을 이용한 5MW급 부유식 해상용 풍력발전기 구조동역학해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Kim, Dong-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, the computational structural dynamic modeling of floating offshore wind turbine system is presented using efficient equivalent modeling technique. Structural dynamic behaviors of the offshore floating platform with 5MW wind turbine system have been analyzed using computational multi-body dynamics based on the finite element method. The considered platform configuration of the present offshore wind turbine model is the typical spar-buoy type. Equivalent stiffness and damping properties of the floating platform were extracted from the results of the baseline model. Dynamic responses for the floating wind turbine models are presented and compared to investigate its structural dynamic characteristics. It is important shown that the results of the present equivalent modeling technique show good and reasonable agreements with those by the fully coupled analysis considering complex floating body dynamics.

  • PDF

Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010 (GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법)

  • Jeong, Dae-Ha;Kim, Dong-Hyun;Kim, Myung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Aeroelastic Response Analysis of 3D Wind Turbine Blade Considering Rotating and Flow Separation Effects (회전과 유동박리효과를 고려한 3차원 풍력발전 터빈 블레이드의 공탄성 응답 해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Kim, Dong-Man;Kim, Yu-Sung;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.68-75
    • /
    • 2009
  • In this study, aeroelastic response analyses have been conducted for a 3D wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Vibration analyses of rotating wind-turbine blade have been conducted using the general nonlinear finite element program, SAMCEF (Ver.6.3). Reynolds-averaged Navier-Stokes (RANS)equations with spalart-allmaras turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous Mach contour on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating wind-turbine blade model.

  • PDF

Study on low frequency swishing sound field by singularities in circular motion with large radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.90-95
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, singularity in circular motion with large radius is introduced as a noise source model. By employing Lowson's acoustic analogy, simple exact solution is obtained. The solution shows that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding spectra of sound pressure for the receiver locations where the retarded time distributions are almost the same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing.

  • PDF

Time Domain Prediction and Analysis of Low Frequency Noise from Wind Turbine using Hybrid Computational Aeroacoustics (CAA) Method (복합 전산 공력음향학(CAA) 방법을 이용한 시간영역 풍력터빈 저주파수 소음 예측과 분석)

  • Lee, Gwang-Se;Cheong, Cheolung;Kim, Hyung-Taek;Joo, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.369-376
    • /
    • 2013
  • Using Lowson's acoustic analogy, low frequency noise of a wind turbine (WT) is predicted in time domain and the noise sources contributing to the low frequency noise is analyzed. To compute averaged pressure distribution on blades of the WT as noise source, XFOIL is utilized. The blade source domain is divided into several segments along the span direction to compute force exerted on air surrounding the blade segments, which is used as input for noise prediction. The noise sources are decomposed into three terms of force fluctuation, acceleration and velocity terms and are analyzed to investigate each spectral contribution. Finally, predicted spectra are compared with measured low frequency noise spectrum of a wind turbine in operation. It is found that the force fluctuation component contributes strongly in low frequency range with increasing wind speed.

Field Test and Evaluation of Noise from Wind Turbine Generators at Yongdang and Hangwon in Jeju Island (제주도 용당/행원 풍력발전기 현장 소음 실증)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Shin, Su-Hyun;Jeon, Se-Jong;Lee, Saeng-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.818-821
    • /
    • 2005
  • The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang and 660 kW WTG at Hangwon in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure levels (ECSPL) of 660 kW WTG at Hangwon vary more widely with wind speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF