• Title/Summary/Keyword: wind turbine noise

Search Result 173, Processing Time 0.028 seconds

Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine (수직형 소형풍력터빈의 비정상 익력 평가)

  • LEE, SANG-MOON;KIM, CHUL-KYU;JEON, SEOK-YUN;ALI, SAJID;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

Acoustic Noise Measurement for the wind turbine blade by usig time-domain beamforming (시간영역 빔포밍을 사용한 풍력터빈 축소모델 소음원 측정)

  • Cho, Tae-Hwan;Kim, Cheol-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.508-511
    • /
    • 2009
  • 풍력터빈 블레이드에서 발생하는 공력소음원의 위치 특성을 파악하기 위해 마이크로폰 어레이를 사용하여 소음원 풍동시험을 수행하였다. 풍동시험은 KARI 중형 아음속풍동에서 수행되었으며, 소음원의 위치파악을 위해 시간영역 회전체 빔포밍기법을 사용하였다. 기존 시간영역 회전체 빔포밍 기법의 경우 시험데이터 해석에 많은 시간이 소요되나, 본 논문에서는 원통형 좌표계에서 회전각 격자간격과 해석기간 간격 사이의 상관조건을 도입하여 데이터 해석시간을 기존 방법 대비 1/5로 단축하였다. 시험결과 나타난 주파수에 따른 블레이드 공력소음원의 위치 특성은 2kHz 이하 대역에서는 블레이드 반경 80% 부근에 주소음원이 위치하며, 4kHz 이상 대역에서는 블레이드 끝단 부근에 주 소음원이 위치하고 있다.

  • PDF

A Study on the Dynamic Characteristic Analysis of the Horizontal Axis Wind Turbine System Blade (수평축 풍력발전기의 Blade 동특성분석에 관한 연구)

  • 손충렬;변효인;박명우;류지윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1394-1399
    • /
    • 2001
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S(Wind Turbine System) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S. the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program (STAR MODAL) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer. For validation of these experiments. the finite element analysis is performed with commercial F.E.M Program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

  • PDF

Offshore Wind Power, Review (해상풍력(Offshore Wind Power) 기술동향)

  • Nah, Do-Baek;Shin, Hyo-Soon;Nah, Duck-Joo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.143-153
    • /
    • 2011
  • Offshore wind power(OWP) is one of the most promising renewable energy and gives higher output than onland one due to stronger and consistent wind in offshore. it offsets shortcoming of noise, spatial limit and less affects scenery, and can be built in larger size. Korea has plenty of offshore wind resources as it is surrounded by the sea in three directions. This review describes recent progress in offshore wind turbine and substructure technology. Market trend in local and overseas, Number of papers published and patents registered are analysed.

Characteristics Analysis and Reliability Verification of Nacelle Lidar Measurements (나셀 라이다 측정 데이터 특성 분석 및 신뢰성 검증)

  • Shin, Dongheon;Ko, Kyungnam;Kang, Minsang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • A study on Nacelle Lidar (Light detection and ranging) measurement error and the data reliability verification was carried out at Haengwon wind farm on Jeju Island. For measurement data error processing, the characteristics of Nacelle Lidar measurements were analyzed by dividing into three parts, which are weather conditions (temperature, humidity, atmosphere, amount of precipitation), mechanical movement (rotation of wind turbine blades, tilt variation of Nacelle Lidar) and Nacelle Lidar data availability. After processing the measurement error, the reliability of Nacelle Lidar data was assessed by comparing with wind data by an anemometer on a met mast, which is located at a distance of 200m from the wind turbine with Nacelle Lidar. As a result, various weather conditions and mechanical movement did not disturb reliable data measurement. Nacelle Lidar data with availability of 95% or more could be used for checking Nacelle Lidar wind data reliability. The reliability of Nacelle Lidar data was very high with regression coefficient of 98% and coefficient of determination of 97%.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Comparison of models for sound propagation of low frequency wind turbine noise (풍력발전기의 저주파 소음 전파 모델 비교)

  • SungSoo Jung;Taeho Park;ByungKwon Lee;JinHyeong Kim;TaeMuk Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.162-167
    • /
    • 2024
  • Low frequency noise emitted by wind turbines is one of the most noise complaints. In this study, the reliability of the models was examined by comparing the measured sound pressure levels with the predicted levels based on Denish model and commercial programs of the SounPLAN and the ENPro based on ISO 9613. As a result of applying it to representative 3 MW wind turbines, on lnad, the measured and the predicted values differed within a maximum of 5 dB in the frequency range of 12.5 Hz to 80 Hz. It may be due to the change in the acoustic power levels because the wind turbines have been in operation for more than 7 years. However, considering that the Boundary Element Method (BEM) predicted value, which is known to be the most accurate in the low frequency band, the predicted values are well matched within 2.5 dB, the models of this study are expected to be used as deviation within 3 dB.

Experiment on Sloshing of Annular Cylindrical Tank for Development of Attitude Control Devices of Floating Offshore Wind Turbines (부유식 해상풍력발전기의 자세제어장치 개발을 위한 환형 실린더 탱크의 슬로싱 실험)

  • Seo, Myeongwoo;Jeong, Weuibong;Cho, Jinrae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2013
  • The floating offshore wind turbines are usually exposed to the wave and wind excitations which are irregular and undirected. In this paper, the sloshing characteristics of annular cylindrical tank were experimentally investigated to reduce the structural dynamic motion of floating offshore wind turbine which is robust to the irregular change of excitation direction of wind and wave. The formula for the natural sloshing frequencies of this annular cylindrical tank was derived theoretically. In order to validate this formula, the shaking equipment was established and frequency response functions were measured. Two types of tank were considered. The first and second natural sloshing frequencies were investigated according to the depth of the water. It has been observed that between theoretical and experimental results shows a good agreement.

Health Monitoring Method for Monopile Support Structure of Offshore Wind Turbine Using Committee of Neural Networks (군집 신경망기법을 이용한 해상풍력발전기 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong Won;Kim, Sang Ryul;Kim, Bong Ki;Lee, Jun Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.347-355
    • /
    • 2013
  • A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

Structure Dynamic Analysis of 6kW Class Vertical-Axis Wind Turbine with Tower (타워를 포함한 6kW급 수직축 풍력발전기 구조진동해석)

  • Kim, Dong-Hyun;Ryu, Gyeong-Joong;Kim, Yo-Han;Kim, Sung-Bok;Kim, Kwang-Won;Nam, Hyo-Woo;Lee, Myoung-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.663-670
    • /
    • 2011
  • In this study, the design and verification of 6kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

  • PDF