• Title/Summary/Keyword: wind turbine monopile foundation

Search Result 25, Processing Time 0.023 seconds

Basic Design of a Flange Connected Transition Piece between Offshore Wind Turbine and Monopile Foundation (해상풍력 터빈과 모노파일 하부기초를 연결하는 플랜지 방식 트랜지션 피스의 기본설계)

  • LEE, KANGHEE;PARK, SUNGGYU;KIM, GEONHO;HWANG, TAEGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.160-168
    • /
    • 2020
  • Depending on the water depth and composition of seabed, there exist different alternatives for the wind turbine supporting structures. Among several types of the structures, the monopile foundation is the dominant solution for support structure, accounting for over 80% of the offshore wind turbines in Europe. To develop the monopile foundation suitable for domestic ocean environment, a basic design of a transition piece was carried out. This paper presents the design procedure of a flange connected transition piece and results of the structural safety assessment.

Behavior Analysis by Verticality Error of Monopile Foundation for 5MW Offshore Wind Turbine (5MW급 해상풍력발전기 모노파일 기초의 수직도 오차에 따른 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Eum, Hark Jin;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.61-68
    • /
    • 2012
  • In general, verticality error necessarily occurs in marine pile foundation due to construction error or marine environmental effects. In marine structure, design by vertical load rather than horizontal load is dominant, but in the offshore wind turbine foundation, horizontal load is dominant. As the structure type that has dynamic movement by blade rotation, verticality error may have structurally significant effects. In this study, structural response feature of foundation and ground were analyzed according to verticality error of monopile foundation of 5MW offshore wind turbine. Marine environmental load was calculated per ISO standard and the margin of verticality error was calculated to be $L/{\infty}$(=0), L/300, L/200 and L/100. As a result of analysis, it was found that the maximum value of member force of the foundation with L/100 error increased about 7.2% compared to the monopile without verticality error.

Load analysis of an offshore monopile wind turbine using fully-coupled simulation (Fully-coupled 시뮬레이션을 이용한 해상 monopile 풍력 발전기의 응력해석)

  • Shi, Wei;Park, Hyun-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.480-485
    • /
    • 2009
  • Offshore wind energy is gaining more attention. Ensuring proper design of offshore wind turbines and wind farms require knowledge of the external conditions in which the turbines and associated facilities are to operate. In this work, a three-bladed 5MW upwind wind turbine, which is supported by the monopile foundation, is studied by use of fully coupled aero-hydro-servo-elastic commercial simulation tool, 'GH-Bladed'$^{(R)}$. Specification of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Design Load case 5.2 is investigated in this work. The steady state power curve and power production loads are evaluated. Comparison between different codes is made.

  • PDF

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

A study on load evaluation and analysis for foundation of the offshore wind turbine system (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Daeyong;Park, Hyunchul;Chung, Chinwha;Kim, Yongchun;Lee, Seungmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

A Study on Load Evaluation and Analysis for Foundation of the Offshore Wind Turbine System (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Dae-Yong;Park, Hyun-Chul;Chung, Chin-Wha;Kim, Yong-Chun;Lee, Seung-Min;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind energy is getting more attention in recent years. Among all the components of offshore wind turbines, the foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, the 5 MW NREL reference wind turbine with rated speed of 11.4 m/s is used for load calculation. Wind and wave loads are calculated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is to simulate systemic and optimized load cases for the foundation analysis of wind turbine system.

Technical Issues for Offshore Wind-Energy Farm and Monopile Foundation (해상풍력 발전의 기술동향 및 모노파일 기술개발 방향)

  • Choi, Chang-Ho;Cho, Sam-Deok;Kim, Ju-Hyong;Chae, Jong-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.486-493
    • /
    • 2010
  • Recently, it has been a worldwide issue to develop offshore wind farm based on the past technical experiences of onshore wind turbine installation. In Korea, the government has the wind-energy to be a new-sustainable field of development to bring green-growth in near future and put political and fiscal efforts to support the academic and industrial technical development. Especially, there are much advancement for the fields of turbine, blade, bearing, grid connection, ETC. Correspondingly, technical needs do exist for the offshore foundation installation techniques in geotechnical point of view. Within few years, 2~5MW offshore wind turbines will be constructed at about 30m water depth and it is known that monopiles of D=4~6m are suitable types of foundation. In order to construct offshore wind-turbine foundation, technical developments for drilling machine, design manual, monitoring&maintenance technique are required. This paper presents technical issues with related to offshore wind farm and large diameter monopile in the point of renewable energy development.

  • PDF

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

Foundation Types of Fixed Offshore Wind Turbine

  • Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.74-85
    • /
    • 2024
  • Offshore wind turbines are supported by various foundations, each with its considerations in design and construction. Gravity, monopile, and suction bucket foundations encounter geotechnical issues, while jacket and tripod foundations face fatigue problems. Considering this, a gravity foundation based on a steel skirt was developed, and a monopile foundation was analyzed for Pile-Soil Interaction using the p-y curve and 3D finite element method (3D FEM). In addition, for suction bucket foundations, the effects of lateral and vertical loads were analyzed using 3D FEM and centrifuge tests. Fatigue analysis for jacket and tripod foundations was conducted using a hotspot stress approach. Some hybrid foundations and shape optimization techniques that change the shape to complement the problems of each foundation described above were assessed. Hybrid foundations could increase lateral resistance compared to existing foundations because of the combined appendages, and optimization techniques could reduce costs by maximizing the efficiency of the structure or by reducing costs and weight. This paper presents the characteristics and research directions of the foundation through various studies on the foundation. In addition, the optimal design method is presented by explaining the problems of the foundation and suggesting ways to supplement them.

Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness (지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석)

  • Jang, Youngeun;Cho, Samdeok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.47-58
    • /
    • 2014
  • This study explores methods for modeling the foundation-seabed interaction needed for the load analysis of an offshore wind energy system. It comprises the comparison study of foundation design load analyses for NREL 5 MW turbine according to various soil-foundation interaction models by conducting the load analysis with GH-Bladed, analysis software for offshore wind energy systems. Furthermore, the results of the aforementioned load analysis were applied to foundation analysis software called L-Pile to conduct a safety review of the foundation cross-section design. Differences in the cross-section of a monopile foundation were observed based on the results of the fixed model, winkler spring and coupled spring models, and the analysis of design load cases, including DLC 1.3, DLC 6.1a, and DLC 6.2a. Consequently, under all design load conditions, the diameter and thickness of the monopile foundation cross-section were found to be 7 m and 80 mm, respectively, using the fixed and coupled spring models; the results of the analysis conducted using the winkler spring model showed that the diameter and thickness of the monopile foundation cross-section were 5 m and 60 mm, respectively. The study found that the soil-foundation interaction modeling method had a significant impact on the load analysis results, which determined the cross-section of a foundation. Based on this study, it is anticipated that designing an offshore wind energy system foundation taking the above impact into account would reduce the possibility of a conservative or unconservative design of the foundation.