• 제목/요약/키워드: wind turbine control

검색결과 470건 처리시간 0.023초

회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화 (Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain)

  • 김연희;강용철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

리아프노프 함수를 이용한 풍력 발전기 비선형 피치 및 토크 제어기 설계 (Nonlinear Pitch and Torque Controller Design for Wind Turbine Generator Using Lyapunov Function)

  • 김국선;노태수;전경언;김지언
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1147-1154
    • /
    • 2012
  • 본 논문에서는 풍력발전기의 회전속도와 출력을 제어하기 위한 블레이드 피치 제어기 및 발전기 토크 제어 기법을 제시하고 비선형 시뮬레이션을 통하여 그 성능을 확인하였다. 회전속도 오차 및 출력오차를 이용한 양한정 함수를 정의하고 리아프노프 안정성 이론을 적용하여 정적 피치 제어기와 동적 토크 제어기를 설계하고, 제어기 설계 모델과 실제 적용 모델간의 차이를 보상할 수 있도록 시뮬레이션 기반 최적화를 이용하여 설계 인자 값을 결정하였다. 풍력발전기 제어기 설계에 가장 많이 사용되는 동력 전달계 모델을 기반으로 제어기 설계 절차를 예시하였고, 대표적으로 사용되는 비례-적분-미분 제어 및 최대 출력점 추종 토크 제어기와 성능 비교를 통하여 제안된 제어 설계 기법의 타당성을 검증하였다.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화 (Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube)

  • 이광기;한승호
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.1065-1071
    • /
    • 2012
  • 풍력발전기의 안정적인 전력생산은 정격풍속 이상에서 피치제어와 스톨제어와 같은 일정속도제어로 이루어지고 있다. 최근, 효율적인 전력생산을 위하여 정격풍속 이하의 변동풍속 조건에서 최대 출력을 얻기 위한 가변 속도제어가 적용되고 있는 추세이다. 기존의 피치제어기에서는 지글러-니콜스 계단응답법에 의한 제어기 최적화가 이루어지고 있으나, 가변 속도제어의 요구로 보다 정확한 최적화가 필요하게 되었다. 본 연구에서는 기존의 지글러-니콜스 계단응답법을 개선하기 위하여 라틴 하이퍼큐브 샘플링을 통한 신경망모델을 구축하고, 구축된 PID 제어 계수 신경망모델에 유전자 알고리즘을 적용하여 피치제어기를 최적화하였다. 유전자 알고리즘으로 구한 최적해가 지글러-니콜스 계단응답법의 초기해 보다 평균제곱근 오차가 13.4% 향상되었고, 응답특성을 나타내는 상승속도와 정착시간은 각각 15.8% 및 15.3%으로 개선되었다.

3MW급 해상풍력 발전시스템 개발 (3MW Class Offshore Wind Turbine Development)

  • 주완돈;이정훈;김정일;정석용;신영호;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석 (Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System)

  • 김슬기;전진홍;조창희;안종보
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

퍼지 PI 제어기를 이용한 풍력/디젤 하이브리드 발전시스템의 품질제어 (Power Quality Control of Wind/Diesel Hybrid Power Systems Using Fuzzy PI Controller)

  • 양수형;고정민;부창진;강민제;김정욱;김호찬
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes a modeling and controller design approach for a wind-diesel hybrid system including dump load. Wind turbine depends on nature such as wind speed. It causes power fluctuations of wind turbine. Excessive power fluctuation at stand-alone power grid is even worse than large-scale power grid. The proposed control scheme for power quality is fuzzy PI controller. This controller has advantages of PI and fuzzy controller. The proposed model is carried out by using Matlab/Simulink simulation program. In the simulation study, the proposed controller is compared with a conventional PI controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-diesel hybrid power system.

풍력발전기 원격모니터링 시스템 구축 및 개발 (Development of Monitoring System for Wind Turbine)

  • 차장현;이정완;유능수;남윤수
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.63-68
    • /
    • 2006
  • In this paper, remote monitoring system for wind turbine is developed. The developed system consists of data acquisition for wind sensor, and monitoring for site environment. In order to accomplish effective monitoring, the system uses Datasocket, SMB, FTP, Web Server, and G Web Server. Two computer system - one is data acquisition computer using Windows-XP and the other is monitoring computer using UNIX - constraint the distribute system with individual tasks. By using this system, one can perform various monitoring and control tasks in Wind-Turbine application, efficiently.

  • PDF

배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구 (A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging)

  • 손영득;구현근;김장목
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

동작점 변화 조건에서의 풍력터빈 선형 피치제어기 설계 (Design of Linear Pitch Controller in Wind Turbine under the condition of Varying Operating Points)

  • 천종민;김춘경;이주훈;홍지태;권순만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • This paper presents a pitch controller which can hold output power constant at the rated value. Although wind turbine contains complicated nonlinearities, its behaviour within a certain operating range of a point can be approximated by that of a linear model. By doing so, we can apply rather simple and systematic linear control techniques such as PID and LQR(Linear Quadratic Regulator) to design a linear pitch controller. Because these linear controllers are valid only in a sufficiently small range around an operating point, linearized wind turbine model under the condition of varying wind speed needs a linear pitch controller can achieve the aims of tracking the rated rotor rotational speed. We propose an improved linear pitch controller taking each merit of LQR and PI controller under the condition of varying operating points in this paper.

  • PDF