• Title/Summary/Keyword: wind tunnel tests

Search Result 445, Processing Time 0.019 seconds

Investigation of the Vortex Shedding with the Shear Building (전단건물을 이용한 와류발산현상 파악)

  • Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1785-1790
    • /
    • 2010
  • To study the vortex induced vibrations the wind tunnel and the two story shear building were designed and built. The wind tunnel was designed to generate the wind speed up to 24 m/s, and the building was designed to have the two lowest natural frequencies within the range of the vortex frequencies generated by the wind tunnel. The resonance behaviors by the locking-on phenomena were observed during the wind tunnel tests of the shear building with the cylinder attached. From the locking-on phenomena observed it is found that the effects of the amplitudes and the frequencies of the cylinders should be considered on the forces generated by the vortex shedding.

An Experimental Study of Test Section Velocity Calibration for Low-Speed Wind Tunnel (저속풍동 시험부 속도교정에 관한 실험적 연구)

  • Oh, Se-Yoon;Lee, Jong-Geon;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • The purpose of this research is to determine the calibration constants of the wind speed measurement systems required to calculate the wind tunnel velocity in the test section. In the present work, the aerodynamic calibration tests of the test section were conducted in the Agency for Defense Development's Low-Speed Wind Tunnel. The test speed ranged from 10 to 100 m/s with a reference pitot-static pressure probe. The validity of the calibration results was evaluated by comparing them with the previous calibration constants. The calibration results show that fair to good agreement is obtained with resonable accuracy.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

Design and Performance Evaluation of Superstructure Modification for Air Drag Reduction of a Container Ship (공기저항 저감을 위한 컨테이너선 상부구조물 형상설계 및 성능평가)

  • Kim, Yoonsik;Kim, Kwang-Soo;Jeong, Seong-Wook;Jeong, Seung-Gyu;Van, Suak-Ho;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.8-18
    • /
    • 2015
  • Reduction of the fuel oil consumption and corresponding greenhouse gas exhausted from ships is an important issue for today's ship design and shipping. Several concepts and devices on the superstructure of a container ship were suggested and tested in the wind tunnel to estimate the air drag reduction. As a preliminary performance evaluation, air drag contributions of each part of the superstructure and containers were estimated based on RANS simulation respectively. Air drag reduction efficiency of shape modification and add-on devices on the superstructure and containers was also estimated. Gap-protectors between containers and a visor in front of upper deck were found to be most effective for drag reduction. Wind tunnel tests had been carried out to confirm the drag reduction performance between the baseline(without any modification) configuration and two modified superstructure configurations which were designed and chosen based on the computation results. The test results with the modified configurations show considerable aerodynamic drag reduction, especially the gap-protectors between containers show the largest reduction for the wide range of heading angles. RANS computations for three configurations were performed and compared with the wind tunnel tests. Computation result shows the similar drag reduction trend with experiment for small heading angles. However, the computation result becomes less accurate as heading angle is increasing where the massively separated flow is spread over the leeward side.

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

Application of artificial neural network for determination of wind induced pressures on gable roof

  • Kwatra, Naveen;Godbole, P.N.;Krishna, Prem
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • Artificial Neural Networks (ANN) have the capability to develop functional relationships between input-output patterns obtained from any source. Thus ANN can be conveniently used to develop a generalised relationship from limited and sometimes inconsistent data, and can therefore also be applied to tackle the data obtained from wind tunnel tests on building models with large number of variables. In this paper ANN model has been developed for predicting wind induced pressures in various zones of a Gable Building from limited test data. The procedure is also extended to a case wherein interference effects on a gable roof building by a similar building are studied. It is found that the Artificial Neural Network modelling is seen to predict successfully, the pressure coefficients for any roof slope that has not been covered by the experimental study. It is seen that ANN modelling can lead to a reduction of the wind tunnel testing effort for interference studies to almost half.

Wind loads on industrial solar panel arrays and supporting roof structure

  • Wood, Graeme S.;Denoon, Roy O.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.481-494
    • /
    • 2001
  • Wind tunnel pressure tests were conducted on a 1:100 scale model of a large industrial building with solar panels mounted parallel to the flat roof. The model form was chosen to have the same aspect ratio as the Texas Tech University test building. Pressures were simultaneously measured on the roof, and on the topside and underside of the solar panel, the latter two combining to produce a nett panel pressure. For the configurations tested, varying both the lateral spacing between the panels and the height of the panels above the roof surface had little influence on the measured pressures, except at the leading edge. The orientation of the panels with respect to the wind flow and the proximity of the panels to the leading edge had a greater effect on the measured pressure distributions. The pressure coefficients are compared against the results for the roof with no panels attached. The model results with no panels attached agreed well with full-scale results from the Texas Tech test building.

A Prediction of the Equation of Resistance to Motion for Korean High-speed Train (한국형 고속열차의 주행저항식 예측)

  • Kwon, Hyeok-Bin;Kim, Seog-Won;Kim, Young-Guk;Park, Chool-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.119-125
    • /
    • 2007
  • The equation of Resistance to motion of the Korean high-speed train has been calculated and evaluated using train speed measurements gathered from coasting tests in the speed range from 30km/h to 300km/h and wind tunnel test of 1/25th scale model. The factors of resistance to motion have been decomposed into various coefficients which compose the coefficients of Davis equation referring the general resistance to motion equation of KTX train. The coefficients of Korean high-speed train has been calculated using the measurements of coasting tests and the results of wind tunnel test has been implemented to consider the minor shape modification after the coasting tests.

  • PDF

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test (풍동용 3 축 로드셀의 구조최적설계)

  • Lee, Jae-Hoon;Song, Chang-Kon;Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.