• Title/Summary/Keyword: wind test

Search Result 1,771, Processing Time 0.029 seconds

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

Mean wind loads on T-shaped angle transmission towers

  • Guohui Shen;Kanghui Han;Baoheng Li;Jianfeng Yao
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.367-379
    • /
    • 2024
  • Compared with traditional transmission towers, T-shaped angle towers have long cross-arms and are specially used for ultrahigh-voltage direct-current (UHVDC) transmission. Nevertheless, the wind loads of T-shaped towers have not received much attention in previous studies. Consequently, a series of wind tunnel tests on the T-shaped towers featuring cross-arms of varying lengths were conducted using the high-frequency force balance (HFFB) technique. The test results reveal that the T-shaped tower's drag coefficients nearly remain constant at different testing velocities, demonstrating that Reynolds number effects are negligible in the test range of 1.26 × 104-2.30 × 104. The maximum values of the longitudinal base shear and torsion of the T-shaped tower are reached at 15° and 25° of wind incidence, respectively. In the yaw angle, the crosswind coefficients of the tower body are quite small, whereas those of the cross-arms are significant, and as a result, the assumption in some load codes (such as ASCE 74-2020, IEC 60826-2017 and EN 50341-1:2012) that the resultant force direction is the same as the wind direction may be inappropriate for the cross-arm situation. The fitting formulas for the wind load-distribution factors of the tower body and cross-arms are developed, respectively, which would greatly facilitate the determination of the wind loads on T-shaped angle towers.

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.

Performance Study of Wind Augmentation Device for Building-integrated Wind Power (건물 풍력발전을 위한 집풍장치 성능 연구)

  • Shin, Jae-Ryul;Park, Jae-Jeun;Kim, Han-Young;Kim, Dae-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • This study is performance estimation of wind augmentation device for BiWP(Building-integrated Wind Power) which recently attracts attention as a local power. various structures are installed on a rooftop of residential complex buildings. Changing a profile of these, we designed a configuration that is able to capture much air and increase exit velocity. To estimate wind augmented effect of this device, we compared numerical analysis results with wind tunnel test results. Results show that exit velocity is increased from 24% to 60% by wind augmented device on a rooftop of building.

Investigation of mean wind pressures on 'E' plan shaped tall building

  • Bhattacharyya, Biswarup;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.99-114
    • /
    • 2018
  • Due to shortage of land and architectural aesthetics, sometimes the buildings are constructed as unconventional in plan. The wind force acts differently according to the plan shape of the building. So, it is of utter importance to study wind force or, more specifically wind pressure on an unconventional plan shaped tall building. To address this issue, this paper demonstrates a comprehensive study on mean pressure coefficient of 'E' plan shaped tall building. This study has been carried out experimentally and numerically by wind tunnel test and computational fluid dynamics (CFD) simulation respectively. Mean wind pressures on all the faces of the building are predicted using wind tunnel test and CFD simulation varying wind incidence angles from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. The accuracy of the numerically predicted results are measured by comparing results predicted by CFD with experimental results and it seems to have a good agreement with wind tunnel results. Besides wind pressures, wind flow patterns are also obtained by CFD for all the wind incidence angles. These flow patterns predict the behavior of pressure variation on the different faces of the building. For better comparison of the results, pressure contours on all the faces are also predicted by both the methods. Finally, polynomial expressions as the sine and cosine function of wind angle are proposed for obtaining mean wind pressure coefficient on all the faces using Fourier series expansion. The accuracy of the fitted expansions are measured by sum square error, $R^2$ value and root mean square error.

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

Analysis of Wind Pressure Coefficient for Spatial Structure Roofs by Wind Load Standards and Wind Tunnel Tests (국가별 풍하중 기준과 풍동실험에 따른 대공간 구조물 지붕의 풍압계수 분석)

  • Cheon, Dong-jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.103-113
    • /
    • 2017
  • Spatial Structure has suffered from a lot of damage due to the use of lightweight roofs. Among them, the damage caused by strong winds was the greatest, and the failure of the calculation of the wind load was the most frequent cause. It provides that wind tunnel test is used to calculate the wind load. However, it is often the case that the wind load is calculated based on the standard of wind load in the development design stage. Therefore based on this, the structure type and structural system and member design are often determined. Spatial structure is usually open at a certain area. The retractable roof structure should be operated with the open roof in some cases, so the wind load for the open shape should be considered, but it is not clear on the basis of the wind load standard. In this paper, the design wind pressure of a closed and retractable roof structure is calculated by KBC2016, AIJ2004, ASCE7-10, EN2005, and the applicability of wind pressure coefficient is compared with wind tunnel test.

A Study on the Ballast-flying Phenomena by Strong Wind Induced by High-speed Train (열차풍에 의한 고속선 자갈비산현상 연구)

  • Kwon Hyeok-Bin;Park Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 2005
  • The mechanism of ballast-flying phenomena by strong wind induced by high-speed trains has extensively been investigated by conducting wind tunnel test and field-measuring of wind velocity in the vicinity of the track. The ballast gathered from the Seoul-Busan high-speed railway track has been classified by mass and shape to find relationship between those properties and the characteristic of movement in high wind and 16-channel Kiel-probe array has been used to examine the detailed flow structure above the surface of the track. The probability of ballast-flying during the passage of the high-speed train has been assessed comparing the results from wind tunnel test and that from field-measuring. The results shows that when the G7 train runs well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability far small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore radical countermeasure seems to be needed.

Components of wind -tunnel analysis using force balance test data

  • Ho, T.C. Eric;Jeong, Un Yong;Case, Peter
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.347-373
    • /
    • 2014
  • Since its development in the early 1980's the force balance technique has become a standard method in the efficient determination of structural loads and responses. Its usefulness lies in the simplicity of the physical model, the relatively short records required from the wind tunnel testing and its versatility in the use of the data for different sets of dynamic properties. Its major advantage has been the ability to provide results in a timely manner, assisting the structural engineer to fine-tune their building at an early stage of the structural development. The analysis of the wind tunnel data has evolved from the simple un-coupled system to sophisticated methods that include the correction for non-linear mode shapes, the handling of complex geometry and the handling of simultaneous measurements on multiple force balances for a building group. This paper will review some of the components in the force balance data analysis both in historical perspective and in its current advancement. The basic formulation of the force balance methodology in both frequency and time domains will be presented. This includes all coupling effects and allows the determination of the resultant quantities such as resultant accelerations, as well as various load effects that generally were not considered in earlier force balance analyses. Using a building model test carried out in the wind tunnel as an example case study, the effects of various simplifications and omissions are discussed.

Wind tunnel study on fluctuating internal pressure of open building induced by tangential flow

  • Chen, Sheng;Huang, Peng;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.105-114
    • /
    • 2021
  • This paper describes a wind tunnel test on a 1:25 scale model of TTU building with several adjustable openings in order to comprehensively study the characteristics of fluctuating internal pressures, especially the phenomenon of the increase in fluctuating internal pressures induced by tangential flow over building openings and the mechanism causing that. The effects of several factors, such as wind angle, turbulence intensity, opening location, opening size, opening shape and background porosity on the fluctuating internal pressures at oblique wind angles are also described. It has been found that there is a large increase in the fluctuating internal pressures at certain oblique wind angles (typically around 60° to 80°). These fluctuations are greater than those produced by the flow normal to the opening when the turbulence intensity is low. It is demonstrated that the internal pressure resonances induced by the external pressure fluctuations emanating from flapping shear layers on the sidewall downstream of the windward corner are responsible for the increase in the fluctuating internal pressures. Furthermore, the test results show that apart from the opening shape, all the other factors influence the fluctuating internal pressures and the internal pressure resonances at oblique wind angles to varying degrees.