• Title/Summary/Keyword: wind speed sensor

Search Result 89, Processing Time 0.025 seconds

Filtering Method for Analyzing Renewable Energy Stream Data (신재생 에너지 스트림 데이터 분석을 위한 필터링 기법)

  • Jin, Cheng Hao;Li, Xun;Kim, Kyu Ik;Hwang, Mi Yeong;Kim, Sang Yeob;Kim, Kwang Deuk;Ryu, Keun Ho
    • Journal of Convergence Society for SMB
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Recently, due to people's incontinent use all over the world, fossil fuels such as coal, oil, and natural gas were nearly to be exhausted and also causes serious environment pollutions. Therefore, there is a strong need to develop solar, wind, hydro, biomass, geothermal to replace fossil fuels to prevent suffering from above problems. Wish advances in sensor technology, such data is collected as a kind of stream data which arrives in an online manner so that it is characterized as high- speed, real-time and unbounded and it requires fast data processing to get the up-to-date results. Therefore, the traditional data processing techniques are not fit to deal with stream data. In this paper, we propose a kalman filter-based algorithm to process renewable stream data.

  • PDF

The Efficient Method for Video Data Streaming via NMEA-0183 (NMEA-0183 기반 영상데이터의 효율적인 스트리밍 기법)

  • Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1300-1305
    • /
    • 2020
  • Due to the simplicity of communication structure using RS-232 and RS-422, the majority ships have still adapted on these communication interfaces and have constructed their own communication network in the ship. NMEA-0183 is the one of standards for BNWAS(Bridge Navigational Watch Alarm System) and currently being used in many countries. BNWAS utilises diverse sensor devices, GPS, AIS and so on for monitoring the status of ships and their deployments and environmental information(temperature, humidity, wind speed/direction, water temperature/current etc…). This paper proposes the use of any image sensors in NMEA-0183 environment and verifies possibility with certain video qualities through the experiment results. Furthermore the paper gathers videos and monitors the change of their qualities depending on the number of NMEA messages on RS-232 communication link. Finally we make conclusion that our proposal is sufficiently appropriate for ship monitoring system in the NMEA-0183.

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Reliability Improvement of the Electronic Security Fence Using Friction Electricity Sensor by Analyzing Frequency Characteristic of Environmental Noise Signal (환경잡음신호의 주파수특성 분석에 의한 전자보안펜스의 신뢰성 향상)

  • Yun, Seok Jin;Won, Seo Yeon;Kim, Hie Sik;Lee, Young Chul;Jang, Woo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • A passive type of fence security system was developed, which was based on electric charge detection technique. The implemented fence security system was installed at outskirts of greenhouse laboratory in the University of Seoul. The purpose of this research is to minimize false alarms by analyzing environmental noise. The existing system determines the intrusion alarm by analyzing the power of amplified signal, but the alarm was seriously affected by natural strong wind and heavy rainfall. The SAU(Signal Analysis Unit) sends input signals to remote server which displays intrusion alarm and stores all the information in database. The environmental noise such as temperature, humidity and wind speed was separately gathered to analyze a correlation with input signal. The input signal was analyzed for frequency characteristic using FFT(Fast Fourier Transform) and the algorithm that differentiate between intrusion alarm and environmental noise signal is improved. The proposed algorithm is applied for the site for one month as the same as the existing algorithm and the false alarm data was gathered and analyzed. The false alarm number was decreased by 98% after new algorithm was applied to the fence. The proposed algorithm improved the reliability at the field regarding environmental noise signal.

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.

Development of IoT-Based Disaster Information Providing Smart Platform for Traffic Safety of Sea-Crossing Bridges (해상교량 통행안전을 위한 IoT 기반 재난 정보 제공 스마트 플랫폼 개발)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2023
  • Jeollanam-do has 25 land-to-island and island-to-island bridges, the largest number in Korea. It is a local government rich in specialized marine and tourism resources centered on the archipelago and the sea bridges connecting them. However, in the case of sea-crossing bridges, when strong winds or typhoons occur, there is an issue that increases anxiety among users and local residents due to excessive vibration of the bridge, apart from structural safety of the bridge. In fact, in the case of Cheonsa Bridge in Shinan-gun, which was recently opened in 2019, vehicle traffic restrictions due to strong winds and excessive vibrations frequently occurred, resulting in complaints from local residents and drivers due to increased anxiety. Therefore, based on the data measured using IoT measurement technology, it is possible to relieve local residents' anxiety about the safety management of marine bridges by providing quantitative and accurate bridge vibration levels related to traffic and wind conditions of bridges in real time to local residents. This study uses the existing measurement system and IoT sensor to constantly observe the wind speed and vibration of the marine bridge, and transmits it to local residents and managers to relieve anxiety about the safety and traffic of the sea-crossing bridge, and strong winds and to develop technologies capable of preemptively responding to large-scale disasters.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.