• Title/Summary/Keyword: wind speed generator

Search Result 381, Processing Time 0.025 seconds

Firing Angle Control of Soft Starter for Reduction of Inrush Current during Grid Connection of Induction-type Wind Generator (유도형 풍력발전기 계통 연계시 돌입전류 저감을 위한 소프트 스타터 점호각 제어)

  • Song Seung-Ho;Kwon Tae-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.397-402
    • /
    • 2005
  • A new control algorithm of soft starter is proposed for the reduction of the inrush current during the grid connection of the induction-type wind power generator. Currently, the fixed speed wind turbine using induction generator is the most popular wind generation system in Korea. It is shown that the amount of inrush current mainly depends on the control algorithm of the soft starter, a thyristor-based grid connection device. For the simulation study, a 600kw wind turbine simulation model is developed and the transient waveforms are investigated with conventional md proposed methods. Also experimental results using 3.7kW experimental set-up show that the peak value of inrush current is reduced about 20$\%$ using proposed algorithm.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

Augmentation of Wind Farms Ride Through by DFIG-based Variable Speed Wind Generators

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.104-113
    • /
    • 2012
  • Wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage has been recovered. Doubly Fed Induction Generator (DFIG) based wind farm is gaining popularity these days because of its inherent advantages like variable speed operation and independent controllability of active and reactive power over conventional Induction Generator (IG). This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs. Simulation analysis by using PSCAD/EMTDC shows that the DFIGs can effectively stabilize the IGs and hence the entire wind farm through the proposed control scheme by providing sufficient reactive power to the system.

Grid-Connected Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통 연계형 풍력발전 시스템)

  • Kim Hyeung-Gyun;Abo-Khalil A.;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.73-76
    • /
    • 2003
  • This paper proposes a maximum output power control of grid-connected wind power generation system using cage-type induction generators. For generator control, indirect vector control is used, where d-axis current controls the excitation level and q-axis current controls the generator speed. The generated power flows into the utility through the grid-side converter, by which the do link voltage is controlled to be constant and the ac current is controlled in sinusoid and. The generator speed is adjusted according to wind speed for extracting maximum power generation. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application (도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석)

  • Choi, Mansoo;Choi, Hyewon;Lee, Changmin;Choi, Hyenjun
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

Development of Hardware Simulator for PMSG Wind Power System Composed of Anemometer and Motor-Generator Set (풍속계와 Motor-Generator를 이용한 영구자석동기발전기 풍력발전시스템 하드웨어 시뮬레이터 개발)

  • Oh, Seung-Jin;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.185-187
    • /
    • 2009
  • This paper describes development of a hardware simulator for the PMSG wind power system. The simulator consists of a realistic wind turbine model using anemometer, vector drive, induction motor. The turbine model generates torque and speed signals for a specific wind turbine with real wind speed. The torque and speed signals are scaled down to fit for the input power of 3kW PMSG. The hardware simulator was developed through computer simulations, and the operation was confirmed by experimental works.

  • PDF

Generator Speed Control Algorithm with Variable Wind Speed Emulation Using Wind Turbine Simulator (풍력 발전기 시뮬레이터를 이용한 풍속 변동 모의 및 발전기 속도 기준값 결정에 관한 연구)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho;Ryu, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.331-334
    • /
    • 2003
  • In this paper, on the subject of a speed control wind turbine, the type of wind speed reference decision between conventional MPPT tracking speed control and MPPT with LPF(Low Pass Filter) speed control algorithm are introduced and its performances are compared using a model based on MATLAB Simulink, and to get more realistic output data, the stored wind data as its wind speed input from 30kW wind power system in Buan, Haechang is used.

  • PDF

Critical Characteristics Estimation of a Large-Scale HTS Wind Turbine Generator Using a Performance Evaluation System

  • Kim, Taewon;Woo, Sang-Kyun;Kim, Changhyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Large-scale High Temperature Superconducting (HTS) wind power generators suffer from high electromagnetic force and high torque due to their high current density and low rotational speed. Therefore, the torque and Lorentz force of HTS wind power generators should be carefully investigated. In this paper, we proposed a Performance Evaluation System (PES) to physically test the structural stability of HTS coils with high torque before fabricating the generator. The PES is composed of the part of a pole-pair of the HTS generator for estimating the characteristic of the HTS coil. The 10 MW HTS generator and PES were analyzed using a 3D finite element method software. The performance of the HTS coil was evaluated by comparing the magnetic field distributions, the output power, and torque values of the 10 MW HTS generator and the PES. The magnetic flux densities, output power, and torque values of the HTS coils in the PES were the same as a pole-pair of the 10 MW HTS generator. Therefore, the PES-based evaluation method proposed in this paper can be used to estimate the critical characteristics of the HTS generator under high magnetic field and high torque before manufacturing the HTS wind turbines. These results will be used effectively to research and manufacture large-scale HTS wind turbine generators.

Control Algorithm for Wind Turbine Simulator with Variable Inertia Emulation (가변관성 모의 기능을 가진 풍력발전기 시뮬레이터의 제어 알고리즘)

  • Jeong, Byoung-Chang;Jeong, Se-Jong;Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.170-173
    • /
    • 2002
  • A variable speed wind turbine simulator is designed and implemented for the simulation of wind power generation system. The control algorithm decides the shaft torque delivered to generator taking into consideration the wind speed, the generator rpm, and the rotor blade inertia. It is shown that the proposed control algorithm can emulate the dynamic behavior of actual wind turbine through simulations and experimental.

  • PDF