• Title/Summary/Keyword: wind speed forecast

Search Result 108, Processing Time 0.027 seconds

Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018 (현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험)

  • Choi, Dayoung;Hwang, Yoonjeong;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

  • Kim, Roksoon;Park, Jongyeob;Baek, Jihye;Kim, Bogyeung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2017
  • It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  • PDF

Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea (우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발)

  • Lee, Yeon-Chan;Lim, Jin-Taek;Oh, Ung-Jin;N.Do, Duy-Phuong;Choi, Jae-Seok;Kim, Jin-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

Development for Estimation Improvement Model of Wind Velocity using Deep Neural Network (심층신경망을 활용한 풍속 예측 개선 모델 개발)

  • Ku, SungKwan;Hong, SeokMin;Kim, Ki-Young;Kwon, Jaeil
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.597-604
    • /
    • 2019
  • Artificial neural networks are algorithms that simulate learning through interaction and experience in neurons in the brain and that are a method that can be used to produce accurate results through learning that reflects the characteristics of data. In this study, a model using deep neural network was presented to improve the predicted wind speed values in the meteorological dynamic model. The wind speed prediction improvement model using the deep neural network presented in the study constructed a model to recalibrate the predicted values of the meteorological dynamics model and carried out the verification and testing process and Separate data confirm that the accuracy of the predictions can be increased. In order to improve the prediction of wind speed, an in-depth neural network was established using the predicted values of general weather data such as time, temperature, air pressure, humidity, atmospheric conditions, and wind speed. Some of the data in the entire data were divided into data for checking the adequacy of the model, and the separate accuracy was checked rather than being used for model building and learning to confirm the suitability of the methods presented in the study.

Study on the Estimation of Frost Occurrence Classification Using Machine Learning Methods (기계학습법을 이용한 서리 발생 구분 추정 연구)

  • Kim, Yongseok;Shim, Kyo-Moon;Jung, Myung-Pyo;Choi, In-tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.86-92
    • /
    • 2017
  • In this study, a model to classify frost occurrence and frost free day was developed using the digital weather forecast data provided by Korea Meteorological Administration (KMA). The minimum temperature, average wind speed, relative humidity, and dew point temperature were identified as the meteorological variables useful for classification frost occurrence and frost-free days. It was found that frost-occurrence date tended to have relatively low values of the minimum temperature, dew point temperature, and average wind speed. On the other hand, relatively humidity on frost-free days was higher than on frost-occurrence dates. Models based on machine learning methods including Artificial Neural Network (ANN), Random Forest(RF), Support Vector Machine(SVM) with those meteorological factors had >70% of accuracy. This results suggested that these models would be useful to predict the occurrence of frost using a digital weather forecast data.

A Development of the Program for Flight Suitability Distinction and Calculation of Available Sorties (비행 적합성 판별 및 소티수 산출 프로그램 개발)

  • Kim, Young-Rae;Lee, Sang-Chul;Lee, Jin-Sub;Ryu, Kwang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.105-110
    • /
    • 2011
  • The flight test comes at the end of the aircraft development process and is an unique part. The purposes of the flight test are to evaluate the characteristics of the aircraft and validate its design in the real operating environment. Atmospheric considerations are key elements, when the planner of flight test establishes the flight test planning. The primary objective of atmospheric considerations is to ensure safety of the vehicle. The planning through atmospheric considerations can minimize flight cancellations caused by severe weather. In this paper, we present a program for flight suitability distinction, and develop a program for calculation of available sorties.

The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA (위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과)

  • Lee, Juwon;Lee, Seung-Woo;Han, Sang-Ok;Lee, Seung-Jae;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

Building of Prediction Model of Wind Power Generationusing Power Ramp Rate (Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축)

  • Hwang, Mi-Yeong;Kim, Sung-Ho;Yun, Un-Il;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.211-218
    • /
    • 2012
  • Fossil fuel is used all over the world and it produces greenhouse gases due to fossil fuel use. Therefore, it cause global warming and is serious environmental pollution. In order to decrease the environmental pollution, we should use renewable energy which is clean energy. Among several renewable energy, wind energy is the most promising one. Wind power generation is does not produce environmental pollution and could not be exhausted. However, due to wind power generation has irregular power output, it is important to predict generated electrical energy accurately for smoothing wind energy supply. There, we consider use ramp characteristic to forecast accurate wind power output. The ramp increase and decrease rapidly wind power generation during in a short time. Therefore, it can cause problem of unbalanced power supply and demand and get damaged wind turbine. In this paper, we make prediction models using power ramp rate as well as wind speed and wind direction to increase prediction accuracy. Prediction model construction algorithm used multilayer neural network. We built four prediction models with PRR, wind speed, and wind direction and then evaluated performance of prediction models. The predicted values, which is prediction model with all of attribute, is nearly to the observed values. Therefore, if we use PRR attribute, we can increase prediction accuracy of wind power generation.