• Title/Summary/Keyword: wind speed correction

Search Result 58, Processing Time 0.026 seconds

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations (인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -)

  • Choi, Do-Young;Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.139-153
    • /
    • 2018
  • The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.

Wind Tunnel Test of a Canard Airplane

  • Chung, Jin-Deog;Cho, Ta-Hwan;Lee, Jang-Yeon;Sun, Bong-Zoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.125-131
    • /
    • 2002
  • A low speed wind tunnel test was conducted for a canard airplane model in KARI LSWT. The purpose of the presented paper is to investigate the proper testing approach to correct tare precisely and the interference effects for the canard models which has 21% of canard-to-wing area ratio. Most of tests were performed with image system installation for various elevator deflection conditions at the flexed canard incidence angles. To evaluate the effectiveness of the image system, the obtained correction quantity at an zero elevator setting condition with image system was applied to the rest of elevator deflections and compared with the acquired results for all elevator deflections with image system. Test result showed that the amount of correction quantities were strongly dependent on the elevator deflections, and the difference in aerodynamic coefficients for two approaches was gradually amplified as the elevator deflection angles increased. An adoption of the image system was strongly recommended for the higher canard-to -wing area ratio model, if a proper level of accuracy was required.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient (KOMPSAT-5 후방산란계수의 보정식 산출 및 적용을 통한 해상풍 산출 결과 개선)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1373-1389
    • /
    • 2019
  • KOMPSAT-5 is the first satellite in Korea equipped with X-band Synthetic Aperture Radar (SAR) instrument and has been operated since August 2013. KOMPSAT-5 is used to monitor the global environment according to its observation purpose and the availability of KOMPSAT-5 is also highlighted as the need of high resolution wind data for investigating the coastal region. However, the previous study for the validation of wind derived from KOMPSAT-5 showed that the accuracy is lower than that of other SAR satellites. Therefore, in this study, we developed the correction equation of normalized radar cross section (NRCS or backscattering coefficient) for improvement of wind from the KOMPSAT-5 and validated the effect of the equation using the in-situ measurement of ocean buoys. Theoretical estimated NRCS and observed NRCS from KOMPSAT-5 showed linear relationship with incidence angle. Before applying the correction equation, the accuracy of the estimated wind speed showed the relatively high root-mean-square errors (RMSE) of 2.89 m s-1 and bias of -0.55 m s-1. Such high errors were significantly reduced to the RMSE of 1.60 m s-1 and bias of -0.38 m s-1 after applying the correction equation. The improvement effect of the correction equation showed dependency relying on the range of incidence angle.

Temporal and Spatial Wind Information Production and Correction Algorithm Development by Land Cover Type over the Republic of Korea (한반도 시공간적 바람정보 생산과 토지피복별 보정 알고리즘 개발)

  • Kim, Do Yong;Han, Kyung Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2012
  • Wind is an important variable for various scientific communities such as meteorology, climatology, and renewable energy. In this study, numerical simulations using WRF mesoscale model were performed to produce temporal and spatial wind information over the Republic of Korea during 2006. Although the spatial features and monthly variations of the near-surface wind speed were well simulated in the model, the simulated results overestimated the observed values as a whole. To correct these simulated wind speeds, a regression-based statistical algorithm with different constants and coefficients by land cover type was developed using the satellite-derived LST and NDWI. The corrected wind speeds for the algorithm validation showed strong correlation and close agreement with the observed values for each land cover type, with nearly zero mean bias and less than 0.4 m/s RMSE. Therefore, the proposed algorithm using remotely sensed surface observations may be useful for correcting simulated near-surface wind speeds and producing more accurate wind information over the Republic of Korea.

Validation of Numerical Wind Simulation by Offshore Wind Extraction from Satellite Images (위성영상 해상풍 축출에 의한 수치바람모의 검증)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Lee, Hwa-Woon;Kim, Dong-Hyuk;Kim, Deok-Jin
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.847-855
    • /
    • 2009
  • As a part of effort to establish an offshore wind resource assessment system of the Korean Peninsula, a numeric wind simulation using mesoscale climate model MM5 and a spatial distribution of offshore wind extracted from SAR remote-sensing satellite image is compared and analyzed. According to the analyzed results, the numeric wind simulation is found to have wind speed over predication tendency at the coastal sea area. Therefore, it is determined that a high-resolution wind simulation is required for complicated coastal landforms. The two methods are verified as useful ways to identify the spatial distribution of offshore wind by mutual complementation and if the meteor-statistical comparative analysis is performed in the future using adequate number of satellite images, it is expected to derive a general methodology enabling systematic validation and correction of the numeric wind simulation.

Analysis of Wind Energy Potential on the West Coast of South Korea Using Public Data from the Korea Meteorological Administration (기상청 공공데이터를 활용한 대한민국 서해안 일대의 바람자원 분석)

  • Sangkyun Kang;Sung-Ho Yu;Sina Hadadi;Dae-Won Seo;Jungkeun Oh;Jang-Ho Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.14-24
    • /
    • 2023
  • The significance of renewable energy has been on the rise, as evidenced by the 3020 renewable energy plan and the 2050 carbon neutrality strategy, which seek to advance a low-carbon economy by implementing a power supply strategy centered around renewable energy sources. This study examines the wind resources on the west coast of South Korea and confirms the potential for wind power generation in the area. Wind speed data was collected from 22 automatic weather system stations and four light house automatic weather system stations provided by the Korea Meteorological Administration to evaluate potential sites for wind farms. Weibull distribution was used to analyze the wind data and calculate wind power density. Annual energy production and capacity factors were estimated for 15-20 MW-class large wind turbines through the height correction of observed wind speeds. These findings offer valuable information for selecting wind power generation sites, predicting economic feasibility, and determining optimal equipment capacity for future wind power generation sites in the region.

A Wind Tunnel Study on Influences of ILS Tower on Wind Speed Measurement (계기착륙장치 타워가 풍속관측에 미치는 영향에 관한 풍동실험연구)

  • Choi, Cheol-Min;Kim, Kye-Hwan;Kim, Young-Chul;Kwon, Kybeom
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • In this study, it is first intended to simulate the vertical profile of atmospheric flow in a short wind tunnel. In order to accomplish it, proper devices are designed properly to reduce freestream flow momentum and it is confirmed from the measured velocity profile using hot-wire anemometer that momentum flux of the tunnel free stream can be reduced and desired atmospheric boundary can be created. Second, experiments are performed to identify influences of a surrounding structure measuring correct wind velocity by an anemometer, which are located nearby due to area limitation in actual airport and correction factors are proposed from experimental results. One of findings is that in order to limit the velocity attenuation due to a nearby structure under 10%, wind velocity measuring equipment should be installed at least 6 times of the structure height away from the structure of concern.

Analysis of the Effect of Met Tower Shadow using Computational Fluid Dynamics (전산유체역학을 이용한 풍황탑 차폐효과 해석)

  • Kim, Taesung;Rhee, Huinam;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • When the wind speed is measured by the met-mast sensor it is distorted due to the shadow effect of tower. In this paper the tower shadow effect is analyzed by a computational fluid dynamics code. First three dimensional modeling and flow analysis of the met-mast system were performed. The results were compared with the available experimental wind-tunnel test data to confirm the validity of the meshes and turbulence model. Two-dimensional model was then developed based on the three-dimensional works and experimental data. 2D analysis for various Reynolds numbers and turbulence strengths were then performed to establish the tower shadow effect database, which can be utilized as correction factors for the measured wind energy.

  • PDF