• Title/Summary/Keyword: wind pressure distribution

Search Result 292, Processing Time 0.028 seconds

A low-cost expandable multi-channel pressure system for wind tunnels

  • Moustafa, Aboutabikh;Ahmed, Elshaer;Haitham, Aboshosha
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.297-307
    • /
    • 2022
  • Over the past few decades, the use of wind tunnels has been increasing as a result of the rapid growth of cities and the urge to build taller and non-typical structures. While the accuracy of a wind tunnel study on a tall building requires several aspects, the precise extraction of wind pressure plays a significant role in a successful pressure test. In this research study, a low-cost expandable synchronous multi-pressure sensing system (SMPSS) was developed and validated at Ryerson University's wind tunnel (RU-WT) using electronically scanning pressure sensors for wind tunnel tests. The pressure system consists of an expandable 128 pressure sensors connected to a compact data acquisition and a host workstation. The developed system was examined and validated to be used for tall buildings by comparing mean, root mean square (RMS), and power spectral density (PSD) for the base moments coefficients with the available data from the literature. In addition, the system was examined for evaluating the mean and RMS pressure distribution on a standard low-rise building and were found to be in good agreement with the validation data.

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

Wind Pressure Coefficients and Spectrum Estimation of Dome by Improved Delayed Detached Eddy Simulation (Improved Delayed DES 해석을 통한 돔 형상의 풍압 계수 및 풍압 스펙트럼 산정)

  • Park, Beom-Hee;Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.95-102
    • /
    • 2019
  • In this study, the reliability of the analysis is evaluated by comparing the average wind pressure coefficient, RMS wind pressure coefficient and wind pressure spectrum with same condition of wind tunnel test which are calculated in the high-Reynolds number range of 1.2×106, 2.0×106 each for the typical curved shape dome structure. And it is examined by the reliability of analysis through Improved delayed detached Eddy Simulation(IDDES), which is one of the hybrid RANS/LES techniques that can analyze the realistic calculation range of high Reynolds number. As a result of the study, it was found that IDDES can be predicted very similar to the wind tunnel test. The distribution pattern of the wind pressure coefficient and wind pressure spectrum showed a similar compared with wind tunnel test.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan;Shui-fu Chen;Yi Liu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.

Wind pressure characteristics of a low-rise building with various openings on a roof corner

  • Wang, Yunjie;Li, Q.S.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.1-23
    • /
    • 2015
  • Wind tunnel testing of a low-rise building with openings (holes) of different sizes and shapes on a roof corner is conducted to measure the internal and external pressures from the building model. Detailed analysis of the testing data is carried out to investigate the characteristics of the internal and external pressures of the building with different openings' configurations. Superimposition of the internal and external pressures makes the emergence of positive net pressures on the roof. The internal pressures demonstrate an overall uniform distribution. The probability density function (PDF) of the internal pressures is close to the Gaussian distribution. Compared with the PDF of the external pressures, the non-Gaussian characteristics of the net pressures weakened. The internal pressures exhibit strong correlation in frequency domain. There appear two humps in the spectra of the internal pressures, which correspond to the Helmholtz frequency and vortex shedding frequency, respectively. But, the peak for the vortex shedding frequency is offset for the net pressures. Furthermore, the internal pressure characteristics indirectly reflect that the length of the front edge enhances the development of the conical vortices.The objective of this study aims to further understanding of the characteristics of internal, external and net pressures for low-rise buildings in an effort to reduce wind damages to residential buildings.

A Study of Wind Pressure Distribution for a Rectangular Building Using CFD (CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구)

  • Shin, Dongshin;Park, Jaehyun;Kang, Bomi;Kim, Eunmi;Lim, Hyeongjun;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

Effects of vertical ribs protruding from facades on the wind loads of super high-rise buildings

  • Quan, Yong;Hou, Fangchao;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.145-169
    • /
    • 2017
  • The auxiliary structures of a high-rise building, such as balconies, ribs, and grids, are usually much smaller than the whole building; therefore, it is difficult to simulate them on a scaled model during wind tunnel tests, and they are often ignored. However, they may have notable effects on the local or overall wind loads of the building. In the present study, a series of wind pressure wind tunnel tests and high-frequency force balance (HFFB) wind tunnel tests were conducted on rigid models of an actual super high-rise building with vertical ribs protruding from its facades. The effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and the most unfavorable values of the local wind pressure coefficients were investigated by analyzing the distribution of wind pressure coefficients on the facades and the variations of the wind pressure coefficients at the cross section at 2/3 of the building height versus wind direction angle. In addition, the effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and power spectra of the overall aerodynamic force coefficients were studied by analyzing the aerodynamic base moment coefficients. The results show that vertical ribs significantly decrease the most unfavorable suction coefficients in the corner recession regions and edge regions of facades and increase the mean and fluctuating along-wind overall aerodynamic forces.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 1: Wind tunnel test

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.483-493
    • /
    • 2020
  • Large cylindrical floating-roof tanks, constructed as oil containers, are usually distributed regularly in open area and easily exposed to severe wind loads. However, wind pressures around these grouped squat tanks appear to have not been clearly given in design codes or thoroughly studied in existing researches. This paper conducts a detailed investigation on wind loads on the external wall of a four-tank group in square arrangement. To achieve that, wind tunnel tests are carried out on both empty and full tank groups, considering various wind angles and spacing. Results show that 3 regions in elevation can be identified on the tank shell according to the circumferential wind pressure distribution. The upper 2 regions cover a relatively small portion of the shell where excessive negative pressures are spotted, setting an alarm to the design of the top angle and stiffening rings. By comparing results on grouped tanks to those on an isolated tank, grouping effects concerning wind angle, tank position in group and spacing are discussed. Deviations on pressure distributions that will compromise structural safety are outlined, including the increase of negative pressures, the shift of maximum pressure locations as well as the change of positive pressure range. And, several potentially unfavourable wind pressure distributions are selected for further analyses.

An Experimental Study on Characteristics of Pressure Drop of Screens Used in Horticultural Facilities (원예시설용 망의 압력강하 특성에 대한 실험적 연구)

  • Yum, Sung Hyun;Kang, Seung-Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.31-35
    • /
    • 2013
  • This study was carried out to present the pressure drop for various wind speeds through nine types of screens used in horticultural facilities. The screens have been widely used to prevent harmful insects from being entered into agricultural facilities, to reduce strong wind and to shade a light as well. Whatever the usage of the screens was, it was necessary to have good knowledge of how much the screen caused a pressure drop for wind speeds when analyzing both the inner thermal-flow distribution in the facility and the effect of reducing wind speed by using CFD. Furthermore, as for wind screens, the pressure drop for wind speeds was needed as a design load in evaluating the structural stability of the structures supporting the screens. Therefore, the pressure drop through the screens for wind speeds of 5~30 $m{\cdot}s^{-1}$ at about 5 $m{\cdot}s^{-1}$ interval and inflow angles of $0{\sim}45^{\circ}$ at an interval of $15^{\circ}$ was respectively measured in a subsonic wind tunnel. The relation of the pressure drop for various screens was well fitted as a secondorder polynomial expression.