DOI QR코드

DOI QR Code

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan (Institute of Structural Engineering, Zhejiang University) ;
  • Shui-fu Chen (Institute of Structural Engineering, Zhejiang University) ;
  • Yi Liu (Institute of Structural Engineering, Zhejiang University)
  • Received : 2021.07.01
  • Accepted : 2023.02.20
  • Published : 2023.09.25

Abstract

To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Science Foundation of China.

References

  1. Stathopoulos, T. (1980), "PDF of wind pressures on low-rise buildings", J. Struct. Div., 106(5), 973-990. https://doi.org/10.1061/JSDEAG.0005443. 
  2. Kumar, K.S. and Stathopoulos, T. (1998), "Non-Gaussian wind pressure fluctuations on roofs", Proceedings of 12th Engineering Mechanics Conference, San Diego, USA, May. 
  3. Kumar, K.S. and Stathopoulos, T. (1998), "Fatigue analysis of roof cladding under simulated wind loading", J. Wind Eng. Ind. Aerod., 77, 171-183. https://doi.org/10.1016/S0167-6105(98)00141-X. 
  4. Porterfield, M.L. and Jones, N.P. (2001), "The development of a field measurement instrumentation system for low-rise construction", Wind Struct., 4(3), 247-260. http://doi.org/10.12989/was.2001.4.3.247. 
  5. Caracoglia, L. and Jones, N.P. (2009), "Analysis of full-scale wind and pressure measurements on a low-rise building", J. Wind Eng. Ind. Aerod., 97(5-6), 157-173. http://doi.org/10.1016/j.jweia.2009.06.001. 
  6. Feng, R., Liu, F., Cai, Q., Yan, G. and Leng, J. (2018), "Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi", Wind Struct., 26(1), 11-24. https://doi.org/10.12989/was.2018.26.1.011. 
  7. Li, Q.S. and Hu, S.Y. (2015), "Monitoring of wind effects on an instrumented low-rise building during severe tropical storm", Wind Struct., 20(3), 469-488. http://doi.org/10.12989/was.2015.20.3.469. 
  8. Wang, Y. and Li, Q.S. (2015), "Wind pressure characteristics of a low-rise building with various openings on a roof corner", Wind Struct., 21(1), 1-23. http://dx.doi.org/10.12989/was.2015.21.1.001. 
  9. Rizzo, F., Sepe, V., Ricciardelli, F. and Avossa, A.M. (2020), "Wind pressures on a large span canopy roof", Wind Struct., 30(3), 299-316. https://doi.org/10.12989/was.2020.30.3.299. 
  10. Gioffre, M., Gusella, V. and Grigoriu, M. (2001a), "Non-Gaussian wind pressure on prismatic buildings. I: Stochastic field", J. Struct. Eng., 127(9), 981-989. http://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(981). 
  11. Gioffre, M., Gusella, V. and Grigoriu, M. (2001b), "Non-Gaussian wind pressure on prismatic buildings. II: Numerical simulation", J. Struct. Eng., 127(9), 990-995. http://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(990). 
  12. Sadek, F. and Simiu, E. (2002), "Peak non-Gaussian wind effects for database-assisted low-rise building design", J. Eng. Mech., 128(5), 530-539. http://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(530). 
  13. Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", Proceedings of the Institution of Civil Engineers, 28(2), 187-196. https://doi.org/10.1680/iicep.1964.10112. 
  14. Davenport, A. G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692. 
  15. Kareem, A. and Zhao, J. (1994), "Analysis of non-Gaussian surge response of tension leg platforms under wind loads", J. Offshore Mech. Arctic Eng., 116(3). http://doi.org/10.1115/1.2920142. 
  16. Quan, Y., Gu, M., Tamura, Y. and Chen, B. (2009), "An extreme-value estimating method of non-Gaussian wind pressure" Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, China, November. 
  17. Huang, M., Lou, W., Chan, C. M. and Bao, S. (2013), "Peak factors of non-Gaussian wind forces on a complex-shaped tall building", Struct. Des. Tall Spec. Build., 22(14), 1105-1118. http://doi.org/10.1002/tal.763. 
  18. Liu, Y., Kopp, G.A. and Chen, S.F. (2019), "Effects of plan dimensions on gust wind loads for high-rise buildings", J. Wind Eng. Ind. Aerod., 194, http://doi.org/10.1016/j.jweia.2019.103980 
  19. Holmes, J.D. and Bekele, S. (2001). Wind Loading of Structures, Spon Press, London, UK. 
  20. ESDU 82026 (1982), Strong Winds in the Atmospheric Boundary Layer, Part 1: Mean Hourly Wind Speed, Engineering Science Data Unit; London, UK. 
  21. ESDU 85020 (1985), Characteristics of Atmosphere Turbulence Near the Ground, Part 2: Single Point Data for Strong Winds (Neutral Atmosphere), Engineering Science Data Unit; London, UK. 
  22. ESDU 74031 (1974), Characteristics of Atmosphere Turbulence Near the Ground, Part 2: Single Point Data for Strong Winds (Neutral Atmosphere), Engineering Science Data Unit; London, UK. 
  23. Solari, G. (1993), "Gust buffeting. I: Peak wind velocity and equivalent pressure", J. Struct. Eng., 119(2), 365-382. http://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(365). 
  24. Tieleman, H.W. (2003), "Roughness estimation for wind-load simulation experiments", J. Wind Eng. Ind. Aerod., 91(9), 1163-1173. http://doi.org/10.1016/S0167-6105(03)00058-8. 
  25. Kumar, K.S. and Stathopoulos, T. (2000), "Wind loads on low building roofs: a stochastic perspective", J. Struct. Eng., 126(8), 944-956. http://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(944). 
  26. Li, M. and Li, X. (2005), "MEP-type distribution function: a better alternative to Weibull function for wind speed distributions", Renew. Energy, 30(8), 1221-1240. http://doi.org/10.1016/j.renene.2004.10.003. 
  27. Filliben, J.J. (1975), "The probability plot correlation coefficient test for normality", Technometrics, 17(1), 111-117. https://doi.org/10.1080/00401706.1975.10489279. 
  28. Montgomery, D.C. and Runger, G.C. (2010), Applied Statistics and Probability for Engineers, John Wiley & Sons, Inc., New York, NY, USA. 
  29. Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Ind. Aerod., 93(3), 217-242. http://doi.org/10.1016/j.jweia.2004.12.001. 
  30. Nakamura, Y. (1993), "Bluff-body aerodynamics and turbulence", J. Wind Eng. Ind. Aerod., 49(1-3), 65-78. http://doi.org/10.1016/0167-6105(93)90006-A. 
  31. Akon, A.F. and Kopp, G.A. (2016), "Mean pressure distributions and reattachment lengths for roof-separation bubbles on low-rise buildings", J. Wind Eng. Ind. Aerod., 155, 115-125. http://doi.org/10.1016/j.jweia.2016.05.008. 
  32. Roshko, A. (1965), "Some observations on transition and reattachment of a free shear layer in incompressible flow", Proceedings of the Heat Transfer and Fluid Mechanics Institute, Los Angeles, USA, June. 
  33. Winterstein, S.R. (1988), "Nonlinear vibration models for extremes and fatigue", J. Eng. Mech., 114(10), 1772-1790. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1772). 
  34. Rice, S.O. (1944), "Mathematical analysis of random noise", Bell Syst. Tech. J., 23(3), 282-332. http://doi.org/10.1002/j.1538-7305.1944.tb00874.x. 
  35. Grigoriu, M. (1984), "Crossings of non-Gaussian translation processes", J. Eng. Mech., 110(4), 610-620. http://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(610) 
  36. Huang, M. (2008), "Performance-based serviceability design optimization of wind sensitive tall buildings", Ph.D. Dissertation, The Hong Kong University of Science and Technology, Hong Kong, China. 
  37. Fisher, R.A. and Tippett, L.H.C. (1928), "Limiting forms of the frequency distribution of the largest or smallest member of a sample", Mathem. Proceedings Cambridge Philosoph. Soc., 24(2), 180-190. http://doi.org/10.1017/S0305004100015681. 
  38. Gumbel, E.J. (1954), Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures. US Government Printing Office, Washington, USA. 
  39. Huang, M.F., Chan, C.M., Kwok, K.C.S. and Lou, W. (2009), "A peak factor for predicting non-Gaussian peak resultant response of wind-excited tall buildings", Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, China, November.