• 제목/요약/키워드: wind pressure characteristic

검색결과 47건 처리시간 0.034초

쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성 (Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures)

  • 유장열;유기표
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

부하변동에 따른 풍력발전기용 증속기의 음향파워 특성 (Characteristics for Sound Power of Wind Turbine Gearbox by Load Variation)

  • 이재정;이승용;서영욱;이진현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.311-315
    • /
    • 2012
  • In these days, promising renewable energy, wind turbine is clean energy but has an environmental pollutant which is noise. Noise assessment is one of the major performance evaluations for wind turbine and nowadays, developing and research for measurement and method of the assessment considering environmental pollutants is being important. Object in this study is that figuring out sound power characteristic of the gearbox for wind turbine through measuring sound intensity. In back-to-back test, we can figure out the noise characteristic of the gearbox for wind turbine through comparing and measuring sound pressure level, sound power level in operating at the each load condition respectively.

  • PDF

A Study on the Comparison of wind pressure on the member of Container Crane using Wind tunnel test and CFD

  • An, Tae-Won;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.321-325
    • /
    • 2006
  • Because strong wind is one of the few forces that, although considered in container crane design, still cause significant damage, a container crane was tested to investigate wind load characteristic in uniform flows. So, this study measured an external point pressure at the each members of a container crane according to a wind direction and a shape of members in a wind-tunnel test. The result of this test was compared to those of computation fluid dynamics using a CFX 10. The scale of a container crane model for wind tunnel test applied similarity scales to consider the size of the wind tunnel test section and the boundary condition for CFD is like wind tunnel test.

  • PDF

원형방풍팬스 후면에 있는 저층건물의 풍압특성 (The Characteristic of Wind Pressure of Low-rise Building Located Behind a Circle Wind Fence)

  • 전종길;유장열;유기표;김영문
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.102-109
    • /
    • 2006
  • The effects of wind fence on the pressure characteristics around low-rise building model were investigated experimentally. Flow characteristics of turbulences behind wind fence were measured using hot-wire anemometer. The wind fence characterize by varying the porosity of 0 %, 40 % and the distances from the wind fence from 1 H to 6 H with maintaining the uniform flow velocity of 6 m/s. We investigated the overall characterization of the low-rise building by measuring pressure seventy four on model. The effects of porosity fences varied with the porosity of the fence and measurement locations(1H-6H). The 0% porosity proved to be effective for the protection area of 4H to 6H, but the 40% porosity proved to be effective for the protection area of 1H to 6H. The low-rise building of front face was found to be best wind fence for decreasing the mean, maximum and minimum pressure fluctuation.

  • PDF

쌍곡포물선 대공간구조물의 지붕 풍압계수분포 특성 (Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures)

  • 유기표;김영문
    • 한국공간구조학회논문집
    • /
    • 제12권3호
    • /
    • pp.47-54
    • /
    • 2012
  • 대공간 건축물의 특징 중 경량화 된 지붕 구조 및 재료의 사용으로 인해 지붕면의 손상이나 파괴 등의 피해가 많다. 대규모 경기장의 경우에는 지붕의 구조가 철골 트러스와 인장케이블을 기반으로 테프론이라는 막재료를 사용하여 구조체를 감싸거나 덮는 형태로 많이 설계가 되는데, 특히 이 막재료의 피해가 많으며 심각한 상황이다. 이러한 사례를 통해 대공간 건축물의 지붕에 대한 내풍설계 연구는 아직 미흡한 상태임을 알 수 있다. 본 논문은 쌍곡포물선 대공간구조물의 지붕의 형태에 대한 공기역학적인 특성을 알아보기 위하여 풍압실험과 유체해석을 실시하였다. 실험결과 바람이 불어오는 방향의 지붕 모서리에서 가장 큰 최소피크외압계수가 나타나지만 지붕의 길이방향으로 갈수록 최소피크풍압계수는 감소하고 있었다.

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

제주국제공항 활주로에 양배풍을 유발하는 기압 패턴에 관한 연구 (A Study on the Pressure Patterns that Causes Bidirectional Tailwind on the Runway of Jeju International Airport)

  • 조진호;이강민;백호종;박장훈
    • 한국항공운항학회지
    • /
    • 제31권3호
    • /
    • pp.93-102
    • /
    • 2023
  • Jeju International Airport is characterized by the occurrence of low-level windshear due to its location, surrounding terrain, and its weather characteristics. Especially the low-level windshear accompanied by tailwinds on both sides of the runway i.e., bidirectional tailwind, is a hazardous weather phenomenon with unique characteristics that are difficult to find at any other airports. This study focuses on bidirectional tailwind occurrence at Jeju International Airport in 2020-2021. As a result, characteristic pressure patterns of the types that cause bidirectional tailwind was identified as it was possible to categorize strong wind types such as 1) strong southwest wind, 2) strong east wind, and 3) strong northwest wind, which do not cause bidirectional tailwind, and wind direction variation types such as 4) bidirectional tailwind, and 5) south wind followed by southwest wind, which cause bidirectional tailwind. The results of this study are expected to contribute to improving aviation safety by enabling aviation operators to predict and take appropriate safety measures based on their understanding of the causes and characteristics of bidirectional tailwind.

The loss coefficient for fluctuating flow through a dominant opening in a building

  • Xu, Haiwei;Yu, Shice;Lou, Wenjuan
    • Wind and Structures
    • /
    • 제24권1호
    • /
    • pp.79-93
    • /
    • 2017
  • Wind-induced fluctuating internal pressures in a building with a dominant opening can be described by a second-order non-linear differential equation. However, the accuracy and efficiency of the governing equation in predicting internal pressure fluctuations depend upon two ill-defined parameters: inertial coefficient $C_I$ and loss coefficient $C_L$, since $C_I$ determines the un-damped oscillation frequency of an air slug at the opening, while $C_L$ controls the decay ratio of the fluctuating internal pressure. This study particularly focused on the value of loss coefficient and its influence factors including: opening configuration and location, internal volumes, as well as wind speed and approaching flow turbulence. A simplified formula was presented to predict loss coefficient, therefore an approximate relationship between the standard deviation of internal and external pressures can be estimated using Vickery's approach. The study shows that the loss coefficient governs the peak response of the internal pressure spectrum which, in turn, will directly influence the standard deviation of the fluctuating internal pressure. The approaching flow characteristic and opening location have a remarkable effect on the parameter $C_L$.

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

A combination method to generate fluctuating boundary conditions for large eddy simulation

  • Wang, Dayang;Yu, X.J.;Zhou, Y.;Tse, K.T.
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.579-607
    • /
    • 2015
  • A Combination Random Flow Generation (CRFG) technique for obtaining the fluctuating inflow boundary conditions for Large Eddy Simulation (LES) is proposed. The CRFG technique was developed by combining the typical RFG technique with a novel calculation of k and ${\varepsilon}$ to estimate the length- and time-scales (l, ${\tau}$) of the target fluctuating turbulence field used as the inflow boundary conditions. Through comparatively analyzing the CRFG technique and other existing numerical/experimental results, the CRFG technique was verified for the generation of turbulent wind velocity fields with prescribed turbulent statistics. Using the turbulent velocity fluctuations generated by the CRFG technique, a series of LESs were conducted to investigate the wind flow around S-, R-, L- and U-shaped building models. As the pressures of the models were also measured in wind tunnel tests, the validity of the LES, and the effectiveness of the inflow boundary generated by the CRFG techniques were evaluated through comparing the simulation results to the wind tunnel measurements. The comparison showed that the LES accurately and reliably simulates the wind-induced pressure distributions on the building surfaces, which indirectly validates the CRFG technique in generating realistic fluctuating wind velocities for use in the LES. In addition to the pressure distribution, the LES results were investigated in terms of wind velocity profiles around the building models to reveal the wind flow dynamics around bluff bodies. The LES results quantitatively showed the decay of the bluff body influence when the flow moves away from the building model.