• Title/Summary/Keyword: wind power system

Search Result 1,649, Processing Time 0.029 seconds

A Study on the Optimal Method for Malfunction of Protection Devices in Distribution Systems Interconnected with Photovoltaic Systems (태양광발전이 연계된 배전계통에서 보호협조기기의 오동작에 대한 최적 방안에 관한 연구)

  • Rho, Dae-Seok;Kim, Chan-Hyeok;Shin, Chang-Hoon;Jeong, Won-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1599-1606
    • /
    • 2008
  • Recently, new dispersed generation systems such as photovoltaic, wind power, fuel cell etc. are energetically interconnected and operated in the distribution systems, as one of the national projects for alternative energy with the provision against oil crisis. The technical guidelines on the interconnection of dispersed generation systems have been established and conducted positively. However, protection devices (Re-closer) in primary feeder of distribution system interconnected with photovoltaic generation may cause problems with mis-operation, and then many customers could have problems like an interruption. So, this paper presents the optimal method to minimize the impact of interruption, using both the symmetric method and MATLAB/SIMULINK. And, also this paper shows the effectiveness of proposed method by simulating at the real distribution systems.

For Sustainable Future with Sustainable Architecture - BiWP, New Wave of Building integrated Wind Power System (지속가능미래를 위한 신재생에너지 응용 친환경건축 방향 - 7. BiWP, 건물일체형 풍력 발전 시스템의 새바람)

  • Yoon, Jong-Ho
    • Korean Architects
    • /
    • s.475
    • /
    • pp.65-74
    • /
    • 2008
  • 1970년 초에 배럴당 1불하던 원유가가 지금은 120불을 상회하고 있다. 더욱 놀라운 것은 3년 전만 하더라도 40불 이하 수준이던 것이 불과 몇 년 사이에 3배 이상 급등해 버린 것이다. 우리는 아직 유가 100불 이상의 고유가 시대에 대한 고통을 실감하지 못하고 있지만, 빠른 시일 안에 대항한 형태로 우리를 불편하게 하고, 더가서는 사회 경제 문화 등 모든 우리의 활동패턴에 근본적 변화를 일으킬 것이라는데는 어느 누구도 이의를 달지 못할 것이다. 한편 90년대만 하더라도 친환경 건축기술은 선택적 사양으로 인식되어 왔으며, 일부 고급건물 또는 데모성격의 건물에만 반영되던 미래의 기술 분야로 간주되어왔다. 하지만 10년 남짓 지난 지금 우리 주변에서 가장 흔하게 접할 수 있는 용어 중의 하나가 친환경, 지속가능, 그린, 에코 등 이며, 최근 많은 건설사가 고민하고 있는 가장 중요한 이슈가 친환경 건축 관련 기술이 되어버렸다. 최근 유가의 급등세 보다는 더디다 할 지라도 몇 년 사이에 벌어지고 있는 제도적, 사회 경제적 변화 동향을 돌이켜 볼 때 건축계 또한 매우 빠른 속도로 변해가고 있으며, 부지불시간에 유가등급과 같이 변화된 환경에 놀라는 시기가 곧 도래할 것이다. 오랜 기간 에너지 및 친환경 관련 요소기술의 개발, 정부의 지원제도 확대, 보급 강화 등 각종 노력을 통해 이제는 건축 설계분야에서도 친환경건축물에 대한 저변이 크게 확대되었다고 볼 수 있다. 하지만 실상 우리주변에서 제대로된 친환경 건축물을 실제로 보고자 한다면 두손으로 꼽기도 힘들 정도인 사실에 놀라게 될 것이다. 이러한 배경하에 이번 연재에서는 그동안 오랜기간 떠들고 노력했음에도 불구하고 실제 제대로된 친환경 건축물을 우리 주변에서 찾기 힘든 이유를 건축실무자 측면에서 재고해 보고, 이에 대한 새로운 해결방안을 모색해 보는 계기를 갖고자 한다. 특히 많은 친환경 건축기술 중 최근 선진국을 중심으로 가장 큰 이슈가 되어 있고, 또한 건축사 입장에서 쉽게 접근하기 어려운 기술분야인 신재생에너지 건축응용 측면에서 다양한 최신 기술 및 실질적 접근방법과 사례를 주제별로 제시하고자 한다.

  • PDF

Characterization of Atmospheric Dispersion Pattern from Large Sources in Chungnam, Korea (충남지역 대형사업장의 대기오염물질 확산 특성 파악)

  • Choi, Woo Yeong;Park, Min Ha;Jung, Chang Hoon;Kim, Yong Pyo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.55-69
    • /
    • 2021
  • Chungnam region accounts for the largest SOX (22.8%) emission with the second-largest NOX (10.8%) emission in Korea due to the integration of many large industrial sources including a steel mill, coal-fired power plants, and petrochemical complex. Air pollutants emitted by large industrial sources can cause harmful problems to humans and the environment. Thus, it is necessary to understand dispersion patterns of air pollutants from large industrial sources in Chungnam to characterize atmospheric contamination in Chungnam and the surrounding area. In this study, seasonal atmospheric dispersion characteristics for SOX, NOX, and PM2.5 from ten major point sources in Chungnam were evaluated using HYSPLIT 4 model, and their contributions to SO2, NO2 concentrations in the regions near the source areas were estimated. The predictions of the HYSPLIT 4 model show a seasonal different dispersion pattern, in which air pollutants were dispersed toward the southeast in winter while, northeast in summer. In summer, due to weaker wind speed, air pollutants concentrations were higher than in winter, and they were dispersed to the metropolitan area. The local emissions of air pollutants in Taean area had a greater influence on the ambient SO2 and NO2 concentrations at Taean, whereas SOX and NOX emissions from large sources located at Seosan showed relatevely little effect on the ambient ambient SO2 and NO2 concentrations at Seosan.

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

Impedance-based Long-term Structural Health Monitoring for Jacket-type Tidal Current Power Plant Structure in Temperature and Load Changes (온도 및 하중 영향을 고려한 임피던스 기반 조류발전용 재킷 구조물의 장기 건전성 모니터링)

  • Min, Jiyoung;Kim, Yucheong;Yun, Chung-Bang;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.351-360
    • /
    • 2011
  • Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for offshore structure, there are few cases to apply structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure under changes in temperature and transverse loadings. Principal component analysis (PCA) was applied using conventional damage index to eliminate principal components sensitive to environmental change. It was found that the proposed PCA-base approach is an effective tool for long-term SHM under significant environmental changes.

Culture and Ecology-Oriented City Marketing: A Case Study of Gangneung City (문화.생태를 이용한 도시마케팅 사례 연구)

  • Heo, Chung-Uk
    • Korean Business Review
    • /
    • v.22 no.2
    • /
    • pp.157-179
    • /
    • 2009
  • This papers aims to focus on the city marketing as the green growth policy strategies using a case study of Gangneung City, Republic of Korea. In the case study it was verified the fields of urban growth including ecology, culture, alternative and recycled energy, green transportation system. The implications of the study were as follows: First, the city government had regenerated the coastal pine forest through removing unlicensed buildings which were squatted down in decades. Secondly, the city government has recognized the value of culture that possessed various types of cultural asserts. Thirdly, it is possible to use and produce the ocean energy with the tidal power plant, wind power plant and green deep water because Gangneung City has the ocean-oriented image and is located the coastal region. Lastly, the city government has been utilizing the LED traffic light using solar heat and is going to apply the green car like an electric car. This paper indicates the importance of the alternatives of the green growth-oriented policy through city marketing using the concept of culture and ecology. The city government will strive after an advanced triple bottom line with the ecological sustainability, cultural diversity and economic effectiveness in the near future.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.