• Title/Summary/Keyword: wind power generation

Search Result 915, Processing Time 0.027 seconds

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

WEB-BASED MONITORING FOR PHOTOVOLTAIC/WIND POWER GENERATION FACILITIES (태양광/풍력 발전설비의 웹기반 모니터링기술)

  • Park, Se-Jun;Yoon, Jeong-Phil;Cha, In-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.33-37
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested But, hybrid generation system cannot always generate stable output due to the varying weather condition So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

  • PDF

An Implementation of Real-time Measurement and Assessment System for Power Quality Characteristics of Grid Connected Wind Turbines (계통연계 풍력발전기의 전력품질 평가를 위한 IEC 61400-21 표준 실시간 계측 장치 구현)

  • Lee, Jong-Joo;Kim, Dong-Joon;Moon, Young-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1560-1565
    • /
    • 2010
  • The renewable resource are getting more attentions with increased concerns on the depletion of fossil fuels and several environmental issues like emission problem. Wind power is a representative option among several renewable sources and the generation capacity using wind power is being increased. However, the wind generation is so volatile on its output characteristic, so it is required to assess the grid impact of wind power generation by measuring the fluctuation effect more precisely. This paper proposes the method for measuring the generation output according to IEC 61400-21(Measurement and assessment of power quality characteristics of grid connected wind turbines) to assess the power quality of wind turbine generation. In addition, it shows an application case to a small-scale wind power generator. In the case study, it suggests a structure design of the proposed measurement instrument both on hardware and software aspects, which is composed of a remote monitoring & data analysis program and an FPGA based real-time signal processing device.

ARIMA Based Wind Speed Modeling for Wind Farm Reliability Analysis and Cost Estimation

  • Rajeevan, A.K.;Shouri, P.V;Nair, Usha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.869-877
    • /
    • 2016
  • Necessity has compelled man to improve upon the art of tapping wind energy for power generation; an apt reliever of strain exerted on the non-renewable fossil fuel. The power generation in a Wind Farm (WF) depends on site and wind velocity which varies with time and season which in turn determine wind power modeling. It implies, the development of an accurate wind speed model to predict wind power fluctuations at a particular site is significant. In this paper, Box-Jenkins ARIMA (Auto Regressive Integrated Moving Average) time series model for wind speed is developed for a 99MW wind farm in the southern region of India. Because of the uncertainty in wind power developed, the economic viability and reliability of power generation is significant. Life Cycle Costing (LCC) method is used to determine the economic viability of WF generated power. Reliability models of WF are developed with the help of load curve of the utility grid and Capacity Outage Probability Table (COPT). ARIMA wind speed model is used for developing COPT. The values of annual reliability indices and variations of risk index of the WF with system peak load are calculated. Such reliability models of large WF can be used in generation system planning.

Location Analysis for Wind Power System Using Geo-Spatial Information System (지형공간정보체계를 이용한 풍력 발전 시설의 입지 분석)

  • Lee, Soo-Ju;Song, Seok-Jin;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • Wind power generation is the natural source energy without pollution, and the highest economic efficiency among renewable energies. Amid the recent development of small wind power generation, wind power generation facilities can be installed in the super high-rise buildings or complexes. It is necessary to conduct analyses on appropriate locations in a bid to promote efficient power generation in those locations. In this study, relative weight of the elements required for the wind power generation were estimated by using the Analytic Hierarchy Process in Busan City, and the characteristics of wind velocity and wind direction in Busan City were expressed. As a result, 'Dadae 1-dong, Cheolma-myeon, Noksan-dong' was selected as the candidate region inside Gangseo-gu, Gijang-gun, Saha-gu by using the geo-spatial information system.

Development and application of Auto-Wind program for automated analysis of wind resource (풍력자원해석 자동화 프로그램 Auto-Wind 개발과 응용)

  • Yoon, Seong-Wook;Jeon, Wan-Ho;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.191-191
    • /
    • 2010
  • As many researchers want to predict or assess more about wind condition and wind power generation, CFD(Computational Fluid Dynamics) analysis method is very good way to do predict or assess wind condition and power generation. But CFD analysis is needed much knowledge of aerodynamics and physical fluid theory. In this paper, Auto-Wind CFD analysis program will be introduced. User does not need specific knowledge of CFD or fluid theory. This program just needs topographical data and wind data for initial condition. Then all of process is running automatically without any order of user. And this program gives for user to select and set initial condition for advanced solving CFD. At the last procedure of solving, Auto-Wind program shows analysis of topography and wind condition of target area. Moreover, Auto-Wind can predict wind power generation with calculation in the program. This Auto-Wind analysis program will be good tool for many wind power researchers in real field.

  • PDF

Possibility of Wind Power Generation by a Vehicle-Induced Wind at the Median Strip on Hightway (주행차량에 의한 중앙분리대 유도풍의 풍력발전 활용 가능성)

  • Woo, Sang-Woo;Kim, Hyun-Goo;Jang, Moon-Seok;Shin, Hyung-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.315-317
    • /
    • 2008
  • The purpose of this study is to confirm the possibility of wind power generation by a vehicle-induced at the median strip on highway. In order to find out wind field information, a CFD method was used. According to the simulation results, the x, y, z-component of the wind velocity around a median strip are rapidly changed at near before and behind a moving vehicle. The x-component of the wind velocity appears high within the range of the length of the passing vehicle, and the wind direction appeared in the opposite direction at the behind of a vehicle. However, x and y-components of the wind velocity at the behind of vehicle are shown constantly. We confirmed possibility of wind power generation using a vehicle-induced wind at the median strip.

  • PDF

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

A Study on Wear-type Defects of Part and Materials in Wind Power Generation (풍력발전기 부품소재의 마모결함 검출에 관한 연구)

  • Kim, Sung-Hyun;Choi, Seung-Hyun;Jung, Na-Ra;Yoon, Cheon-Han;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.989-995
    • /
    • 2013
  • Unlike fossil-or nuclear fuel-based power generation, wind power generation using inexhaustible wind energy is a pollution-free, hazardless power generation method. In this study, ultrasound thermography is used for fabricating specimens of wind power generator bearings and wind power generator supplement flanges, and an optimally designed ultrasound horn and ultrasound excitation system are used for detecting damage to part materials of a wind power generation setup. In addition, thermal flow analysis and ultrasonic thermography imaging are comparatively analyzed for improving the detection reliability in terms of surface and internal defects of part materials and for verifying the developed system's field applicability and reliability.

The Study on Correction of Protective Relaying Set Value for the Power Electric Network Paralleled with Wind Farm (풍력전단지의 계통 연계 운전에 따른 보호 계전기 설정치 정정에 관한 고찰)

  • Jang, Sung-Il;Choi, Don-Man;Choi, Jeong-Hwan;Kim, Kwang-Ho;Oh, Jong-Youl;Kim, Joo-Yearl
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.487-490
    • /
    • 2002
  • Wind farm paralleled with electric power network can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the power line with wind farm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator. Consequently, it is difficult to detect the fault happened in the distribution network connected with wind generator. This paper describes the influence of wind turbine generator on the protective relaying system for detecting the fault occurred in a power line network. Simulation results shows that the fault current depends on the fault impedance, location, and the capacity of wind farm and distribution network load.

  • PDF