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Abstract – Necessity has compelled man to improve upon the art of tapping wind energy for power 
generation; an apt reliever of strain exerted on the non-renewable fossil fuel. The power generation in a 
Wind Farm (WF) depends on site and wind velocity which varies with time and season which in turn 
determine wind power modeling. It implies, the development of an accurate wind speed model to 
predict wind power fluctuations at a particular site is significant. In this paper, Box-Jenkins ARIMA 
(Auto Regressive Integrated Moving Average) time series model for wind speed is developed for a 
99MW wind farm in the southern region of India. Because of the uncertainty in wind power developed, 
the economic viability and reliability of power generation is significant. Life Cycle Costing (LCC) 
method is used to determine the economic viability of WF generated power. Reliability models of WF 
are developed with the help of load curve of the utility grid and Capacity Outage Probability Table 
(COPT). ARIMA wind speed model is used for developing COPT. The values of annual reliability 
indices and variations of risk index of the WF with system peak load are calculated. Such reliability 
models of large WF can be used in generation system planning. 
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1. Introduction 
 
Electrical power generation and its utilization is one of 

the key indicators of overall development of any country. 
Currently conventional fossil fuel based power plants 
supply major portion of world’s energy need, which leads 
to green house gases and global warming. Statistics shown 
by International Energy Agency (IEA), indicate that in the 
next 25 years the global energy demands will increase by 
90% from the current demand. Thermal power sources 
account for almost 65% of the total installed capacity in the 
world in the year 2014 and this share is expected to reduce 
gradually in near future since renewable energy sources 
penetrated more into existing energy market. To address 
the issues of global warming, world is looking forward to 
green energy sources, which are cleaner, abundant, 
environmentally friendly and inexhaustible. Among the 
various green energy technologies, wind energy conversion 
system is the most accomplished technology that can 
effectively minimize environmental pollution, eliminate 
fuel price variations and economically beneficial. Presently 
power generation from WFs using mega watt class wind 
turbines (WTs) is cheaper than any other renewable energy 
generation and it can race with coal based power 
generation at present cost. As per the World Wind Energy 

Association (WWEA) report published in February 2015, 
global wind energy capacity reached 370 GW by the end of 
January 2015 and the global wind power contribution is 
close to 4% of world’s electricity demand [1]. Today 
around 103 countries are utilizing wind energy on 
commercial basis. According to WWEA, by the year 2020, 
the world is expecting a wind capacity of more than 
700GW. Worldwide, irrespective of whether developed or 
developing countries, energy demand shall soar up even as 
the standard of living gets upgraded. 

The increasing trend towards renewable forms of power 
generation, and in particular, wind, is facing new 
operational challenges. The uncertainty associated with 
wind is an issue which must be considered for wind power 
to be successfully integrated into an existing electric power 
system. This uncertainty can be managed through the use 
of suitable wind forecasting methodologies. A number of 
studies concerning ARMA (Auto Regressive Moving 
Average) wind speed modeling and reliability analysis 
have been reported in the literature [2-8]. It has been 
shown that stochastic wind speed can be approximated by 
an ARMA model of order (n, n-1) and describes method for 
fitting wind speed models [2]. In reference [4] the wind 
speed is modeled using ARMA method and the impact of 
replacing the conventional generating system with wind 
energy conversion system (WECS) on reliability indices 
are examined on RBTS and IEEE-RTS. The results show 
that to sustain a reliability criterion, the wind turbine 
generator (WTG) capacity should be higher than the 
conventional generating units. Also the system reliability 
can be improved by locating WTG units at multiple 
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independent sites. In addition to this, energy storage in 
connection with WECS can enhance the continuity of wind 
energy and hence can improve the reliability contribution 
[3, 7]. Wind speed simulation using ARMA model 
generates both positive and negative values and the entire 
negative values are set to zero during reliability analysis 
[5]. This in turn may result in some error in further 
calculations, resulting analysis and future predictions. 

References [9, 10] present, how ARIMA technique can 
be used for load forecasting in power system with better 
accuracy. In [11] authors propose a method to predict 
electricity price in the electricity market of California and 
Spain using ARIMA technique finding good results. A 
comprehensive fractional ARIMA model for forecasting 
hourly mean wind speeds is presented in [12] and the 
results show that by this method the forecasting accuracy is 
enhanced by an amount of 42 percentages in comparison 
with the persistence technique. In [13], a limited ARIMA 
model is used for wind power modeling relying on annual 
wind power measurement at Nysted offshore WPP in 
Denmark. The LARIMA model is developed by intro-
ducing a limiter in ARIMA model to represent the lower 
and upper bounds of the wind power. 

Box-Jenkins ARIMA modeling of wind speed, a novel 
technique for evaluating reliability indices of large WF is 
detailed in this paper. Wind speed is a nonstationary 
random process, but forecasting wind speed using ARMA, 
the same is assumed to be stationary time series. In 
ARIMA modeling, it is possible to convert a nonstationary 
time series into an associated stationary time series by 
taking differences, without changing basic statistical 
characteristics. This unique property of ARIMA provides 
better model accuracy. So in this paper an ARIMA model 
of wind speed is developed to evaluate reliability indices. 
The paper is organized as follows. Section 2 introduces the 
significance of capacity factor in WF. ARIMA model for 
the site is identified, simulated and an eleven state power 
generation model is deduced for the site in section 3. 
Reliability models of WF are developed with the help of 
load curves of the utility grid in section 4. Economic 
viability of WF is checked in section 5. Results and 
discussion including reliability analysis and energy cost 
analysis are given in section 6. Finally in section 7 
concluding remarks of the paper and future works are 
explained. 

 
 

2. Capacity Factor 
 
Capacity factor (CF) and average energy output over a 

period of time are the two key performance indicators of a 
WT. CF can be expressed as the ratio of average power 
output to the rated output power of the WT and the average 
power output is a more useful index than rated power. It is 
commonly accepted that wind speed statistical behavior 
can be accurately depicted by Weibull probability density 

function, which is given as. 
 () = 	 	 		  	 –  																												(1) 
 

where  and  are the shape and scale parameters, which 
can be estimated from the statistical analysis of wind speed. 

Based on Weibull distribution, the average power		  
is given by [14] 
 

 =    −		   −	  	– 	 															(2) 
 

Pr  is the rated value of electrical power of WT and its 
CF is given as 
  = 	 																																		(3) 

 
Therefore 

  = 	  −	 	   −	  	– 	  																						(4) 
 
where  ,  ,  are cut-in wind speed, rated wind speed 
and furling or cut-out wind speed respectively. The net 
energy output per annum  is given by. 
  	= 		  	× 		8760		(ℎ)																					(5) 

 
Further, CF is a function of site specifications and WT 

speed parameters. It is beneficial to both manufacturer and 
consumer for the cost effectiveness of a WECS can be 
approximated by the CF of the turbine. In general higher 
the value of CF the better is the economic performance. 

 
 

3. Methodology 
 

3.1 ARIMA model 
 
ARIMA time series forecasting procedure has been 

developed by G.E.P BOX and G.M Jenkins [15]. A general 
ARIMA (p,d,q) is given by 

 ()	 = ()	 																															(6) 
 

where ()  is an autoregressive operator of order p and () is a moving average operator of order q. 
 

where 
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Fig. 1. A general ARIMA model represented by a series  

of three linear filters. 
  =	∇		  																																							(7) 

 
d is the order of differencing and B is the backward 

difference operator. 
The general ARIMA model can be generated from white 

noise by means of three filtering operations as given in Fig. 
1. Thus  
 	 =	 − 		 −	…−  	= 	 () 										(8) 

 
The general procedures of Box-Jenkins ARIMA involve: 
 

· Plot the time series data and choose proper transfor-
mations. The most commonly used transformations are 
differencing operation and variance – stabilizing trans-
formations. 

· Calculate and examine the sample ACF (autocorrelation 
function) and the sample PACF (partial autocorrelation 
function) of the original series to further confirm a 
necessary degree of differencing. 

· Compute and examine the sample ACF and PACF of the 
properly differenced series to identify the order of p and q. 

· Check model adequacy based on the properties of ACF 
and PACF of the ARIMA models. 
 
Autocorrelations are statistical measures that indicate 

how a time series is related itself over time. Autocor-
relation coefficients are key statistics in time series analysis; 
they are used to evaluate relationship among series values. 
The autocorrelation at lag1 represents the correlation 
between the original series xt and the same series moved 
forward by one period. 

 
The autocorrelation at lag k is defined by 
  = [( − )(	– )][( − )][( − )]																(9)	

 
where  is the true mean of the stochastic process. 

Box-Jenkins forecasting models are tentatively identified 
by examining the behavior of the ACF, 	  and the 
PACF,   for the values of stationary time series  , 	,		, ……. 

The autocorrelation of stationary data reduce to zero 
comparatively quickly, while for a nonstationary time 
series they are significantly apart from zero for many time 
lags [15]. 

The sample autocorrelation at lag k is given by 
  		= 	∑ 	( −	̅)(		 −		 ̅)				 ∑ 	( −	̅)		 																		(10) 

 

where           ̅ = 	∑ 	()	() 																																					(11) 
 

The partial autocorrelation between xt and xt+k  is given by 
  =  [( − )(	 − )] 	( − ) ( − )									(12) 

 
Partial autocorrelations are another set of statistical 

measures similar to autocorrelations that are used to 
measure the degree of association between xt and  xt+k  
when the effects of other time lags 1,2,3….k-1 are removed. 

 
3.2 ARIMA wind speed modeling and simulation 

 
The wind data for time series analysis was collected 

from Theni site with an installed capacity of 99MW, which 
was commissioned on July 2010. The measurement time 
interval is ten minute with a record of one year (2011). The 
hourly values of wind speeds are calculated by averaging 
six consecutive ten minute values of wind data [16]. This is 
depicted in Fig. 2. The sample ACF and sample PACF of 

 
Fig. 2. Wind speed time series  

 
Fig. 3. ACF and PACF of observed series 
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the observed time series is shown in Fig. 3 and the 
autocorrelation function decays very slowly. This indicates 
the time series is nonstationary. 

A nonstationary time series is converted to stationary 
time series by taking first difference and the resulting time 
series is as shown in Fig. 4. The differencing tends to 
remove short and long term trends in a time series and is 
therefore used to achieve stationarity. Autocorrelation plot 
and partial autocorrelation plot of the first differenced time 
series is depicted in Fig. 5 and it is observed that there is 
no clear pattern in sample ACF and sample PACF where 
the time series appears to be stationary. 

Using this stationary time series, a family of ARIMA 
models was created by varying p and q in the range of (0-
5). The upper limit of value five for the model order was 
selected keeping frugality in mind. Out of the possible 
models using these variations, the optimum model was 
identified after adequacy check [8]. ARIMA (1,1,2) model 
is identified as the best fitted time series model for the 
wind site and the model is given by 

 		. 	. 		–	. 																			(13) 
 

where et ∈ N (0, 2.400972), which represents a white noise 
whose mean is zero and variance is 2.400972. 

The simulated wind speed    at hour   can be 
estimated as.    

  	= 		  +	 	× 	 																							(14) 
 

where:   and   are the standard deviation and mean 
value of the measured wind speeds. 

The purpose of model adequacy check is to examine 
how well the ARIMA (1,1,2) model captures the observed 
time series. This can be done by comparing main statistical 
properties of simulated hourly wind data with those of 
measured data and is shown in Table 1. 

 
Table 1. Observed and simulated wind speed properties 

Parameters  Mean value in m/s  Standard deviation 
Observed wind speed 5.87 4.7 
Simulated wind speed 6.3 4.9 

 
Fig. 6 explains the degree of matching of the measured 

and simulated wind speed probability distributions using 
the ARIMA (1,1,2) model. It is observed that two curves 
are matching and the ARIMA (1,1,2) model is the best way 
of representing the observed wind speed pattern. 

 

 
Fig. 6. Probability versus wind speed 

 
3.3 Wind turbine power modeling  

 
The WT power generation depends on three factors: 

wind pattern of the location, WT availability and 
characteristics of turbine.  The WTG with rated power (Pr) 
of 1.65MW manufactured by Vestas – V82 is used in this 
analysis and the details are taken from [17]. The values of 
operational parameters are shown in Table 2. 

 
Table 2. Operational parameters of Vestas – V82 

 Cut-in speed in m/s  Rated speed in m/s Cut-out speed in m/s 
3.5 13 20 

 
The nonlinear relationship between the output power and 

the wind velocity of V82 – 1.65MW turbine is shown in 
Fig. 7. The available output power of a WTG on hourly 
basis at any time point t can be estimated using the 
following nonlinear equation. 
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Fig. 4. First difference time series of observed wind speed 

 
Fig. 5. Autocorrelation functions of first difference series. 
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Fig. 7. Power curve of V82-1.65MW turbine 

 

 (15) 

 
where the constants A, B and C are presented in [18]. 

 
3.4 Capacity outage probability table 

 
In power system reliability assessment, conventional 

units are generally modeled by a two state Markov model 
in a failure-repair process. The conditional probability of 
failure / repair during a fixed interval of time is constant. 
This implies the failure / repair characteristics of con-
ventional units are associated with exponential distributions 
[19]. The output power of a WTG varies continuously from 
zero to the rated power, and so it requires a multistate 
model. Each derated states of this model represent various 
energy levels. A WF generally consists of a large number 
of identical WTG units and they share the same wind 
pattern. To develop a power output model for a WF, the 
power generation from all the WTG units is to be added up. 
The power generation model required in the loss of load 
method is known as COPT. A COPT represents a sequence 
of different capacity levels and associated probabilities 
[19]. A number of power generation models can be created 
by taking different number of partial states and the 
accuracy of the result increases with number of states. It is 
observed that a five state COPT is enough in capacity 
adequacy assessment of wind integrated power system [6].  
In this work, hourly power outputs were classified into 11 
states and their corresponding probabilities were calculated. 

Table 3 shows that probability of having full WTG output 
(zero percentage capacity outage) is comparatively low for 
this wind pattern. Since reliability indices are not much 
changed by the Forced Outage Rates (FOR) of WTG, it is 
not included in this calculation [20, 21].WECS reliability is 
mainly affected by the wind characteristics of the site. 

 
 

4. Reliability Modeling  
 
As wind power sharing in conventional power system 

increases considerably now a days, formulation of a 
comprehensive reliability evaluation draws more attention. 
The various probabilistic concepts which are used for 
reliability evaluation in power system planning are LOLP 
(loss of load probability), LOLE (loss of load expectation) 
and LOEE (loss of energy expectation). The main objective 
in generation capacity reliability evaluation is to check 
whether the load demand is met by number of units 
generated. Load data is essential to calculate the risk 
evaluation. Commonly used load models are load duration 
curve and daily peak load variation curve. In load duration 
curve approach, the individual hourly load data are used. 
An annual load duration curve is used in this analysis. The 
COPT shown in Table 3 is combined with system load 
characteristics to give an expected risk of load loss. 

LOLP is expressed as the probability that, load is   
more than the available power generation. This is a 
probabilistic index. A loss of load occurs when load is 
more than available generation. LOLE is the most 
commonly used and accepted probabilistic method in risk 
analysis. LOLE can be calculated as [19]. 

  = 		
 																																(16) 

 
where N = The number of cases for which the generation 

outage is more than the reserve available. 
pk = The probability of the generation outage Ok  
tk =  The period of lost load in generation outage Ok   

 
LOEE parameter is used to access the generation system 

reliability. LOEE is given as [19]. 
 

 
1

N

k k
k

LOEE E p
=

=å   (17) 

 
where Ek = Energy curtailed by the capacity outage Ok . 
The total energy demand is calculated by computing the 
area under the load duration curve. 

Installed capacity of the WF under consideration is 
99MW. The hourly average power generation of the WF in 
year 2011 is 22MW. This quantity is too low in comparison 
with installed WF capacity and this is because of the 
uncertainty in wind speed and the wind turbines availability 
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Table 3. COPT 

Capacity 
out (MW) 

Capacity 
in (MW) Probability Capacity  

out (MW) 
Capacity in 

(MW) Probability 

0 99 0.30255 79 20 0.04218 
5 94 0.07679 84 15 0.03467 

21 78 0.05636 89 10 0.07019 
49 50 0.07208 95 4 0.05226 
69 30 0.04801 99 0 0.19361 
74 25 0.0513    
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etc. For risk analysis, knowledge of load duration curve is 
essential. Since WF provides power to the utility grid, it is 
better to apply the analysis to the load duration curve for 
the utility grid. To separate the contribution of WF from 
other sources, the load duration curve is scale down in such 
a manner that the maximum demand of the grid is equal to 
hourly average power generation of the WF [22]. Here the 
hourly average power generation is 22MW which is taken 
as the peak load. Thus the newly deduced load duration 
curve for the analysis is of similar trends as that of the 
utility grid load curve, but with reduced magnitude and is 
shown in Fig.8. Using this method reliability evaluation of 
WF in real world circumstance is possible. 

 
 

5. Economic Aspects of Wind Power Generation 
 
It is difficult to estimate the total investment accurately 

before the WF development actually begins. The budget 
plan may keep provision for contingency. It is important to 
find out the economic outcome after the WF begins to 
deliver power to the grid [23]. Though the plant begins to 
generate revenues, it also draws costs for maintenance and 
operation. The viability of a WF depends on its ability to 
produce wind power at a lower cost. Hence it is important 
to find out all expenditure involved in WF over entire life 
period. There are a number of factors that affect the cost 
of wind energy. These factors mainly depends on local 
conditions which include: installation cost, cost of land, 
amount of wind power generated, wind speed, cost of WT 
and its life span, incentives, tax exemptions, discount rate 
and electricity tariff [24, 25]. Moreover, the cost of WT 
accounted for almost 70 percentage of the total initial 
investment. 

 
5.1 Life cycle costing 

 
Cost per WT rated power, cost per WT unit rotor area 

and cost/unit of wind energy (cost/KWh) generated are the 
three methods that can be used to calculate operating cost 
of energy produced [24]. However, cost/KWh is often 
taken as the main economic indicator for techno-economic 
analysis. The widely used method to estimate the cost/ 
KWh is Life Cycle Costing (LCC) which utilizes the 
principle of time value of money. It can be described as the 
ratio of levelized annual wind energy costs to the annual 
wind energy production of the WF [24]. By using this 
method the cost of wind energy per unit can be estimated 
as.  

 
  = 	  	 	 	1 +  ()()   (18) 

 
where cI is the initial investment, n-is the turbine lifetime 
and I is the real rate of interest. 8760 PrCF is the WF 
annual energy output in KWh. The operation and 

maintenance cost Com can be expressed as a percentage m 
of cI and is given as (19). 

 
 Com = mcI  (19) 

 
The primary aim of WF operation and maintenance 

(O&M) is to improve the WT yield and keep production 
cost as minimum as possible. Compared to other power 
plants, the Com of WF is very low, since no fuel is needed. 
Generally WFs are designed for a technical life time of 
20 years. Maintenance costs will however increase with 
age, therefore economic lifetime may be shorter than 
technical lifetime. So proper O&M of WTs are critical in 
maximizing returns from a WF investment. 

 
5.2 Benefit cost ratio 

 
BCR is an economic performance indicator in LCC 

analysis to judge economic viability of a WF and is given 
as [24]. 

 

 
 
Mathematically 

 

 =  	(1 + ) − 1(1 + )  1 + 	 (1 + ) − 1(1 + ) 																(21) 
 

where BA is the acquired income annually through 
electricity sale. If BCR >1; it is concluded that WF is 
economically attractive. 

 
 

6. Results and Discussion 
 

6.1 WF Reliability analysis 
 
Fig. 8 demonstrates system load pattern. The study 

period taken for the analysis is one year and therefore 100 
percentages on x- axis in Fig. 8 corresponds to 8760 
hours [26, 27]. The area under the system load pattern 
gives the energy required in that period. The annual 
reliability indices of WF are obtained by comparing the 
peak load demand 22MW with corresponding annual load 
duration curve and the values are shown in Table 4. These 
values provide an insight to the WF annual reliability. Even 
though a number of indices are used for risk analysis in 
WECS, the most significant index is LOLE [28]. The risk 
index LOLE is calculated by convolving WF multistate 
equivalent model with load model. 

Fig. 9 demonstrates the variations in risk with system 
peak load and is found that risk index increase with 
increase in peak load. Furthermore, the percentage 
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reliability of WF to meet the load demand can be 
calculated as [22]. 

 
  Reliability in percentage  

    100
  

Number of hours LOLE
Number of hours

-
= ´  (22) 

 
WF reliability corresponding to different peak load 

values is calculated and is given in Table 5. Fig. 10 depicts 
the change in reliability with respect to changes in peak 
load. It is found from Fig. 10 that reliability improves with 
decrease in load demand and the change in reliability is  

8.5% for 50% change in load. Thus WF provides better 
reliability against change in load. 

 
6. 2 Energy cost analysis 

 
The economic analysis of Theni site was performed 

using LCC method. To determine cost/unit of wind energy, 
it is important to consider following assumptions [25, 29]. 

(i) The WT lifetime (n) was considered to be 20 years. 
(ii) The interest rate (i) is 8 % and inflation rate (r) is 6% 
(iii) Com was considered to 1.5% of the initial investment. 
(iv) It is also assumed that the WF generate equal 

amount of energy in each year during its useful life 
period. 

 
All the above assumed values including turbine cost and 

other initial costs incurred for installation, land etc. are 
collected from the WF developer. CF is calculated using 
Eequation (4) with the help of cubic mean wind speed, 
which provides more accurate result and the value of CF in 
this site is 0.2. It should be noted that CF of a WT at a 
potential site may vary from 0.15 to 0.4. The estimated cost 
of wind energy/unit is Rs. 1.79 and BCR is 1.55, which is 
more than one. The interest rate has great impact on 
economic result. The higher the interest rate, longer time it 
will take to pay back loan. In India interest rate that banks 
offer for a wind power project is around 9% in 2008, but 
recently the trust in reliability of wind power has increased 
and hence interest rates are going down. 

 
 

7. Conclusion 
 
The power generated by a WECS depends on site 

specific wind velocity which randomly varies with time. 
This random variation of wind velocity is a significant 
factor in wind power modeling. So an accurate wind speed 
model to forecast wind power fluctuations at a site is 
important. 

· This paper developed Box-Jenkins ARIMA time series 
model for wind speed. It is well-known that wind 

 
Fig. 8. System load duration curve 

 

 
Fig. 9. LOLE versus peak load 

 
Table 4. Annual reliability indices 

LOLP LOLE in  hours/year LOEE in MWh 
0.3491 2178.322 457.213 

 
Table 5. LOLE and reliability variations with respect to 

changes in peak load 

Peak load in MW LOLE in hours/year Reliability in percentage 
22 2178.322 75.13 
20 2092.272 76.12 
18 2044.836 76.66 
16 1930.4 77.96 
14 1812.352 79.31 
11 1622.4 81.5 
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velocity does not follow a specific pattern for any 
particular season. This necessitates accurate modeling 
of wind speed like ARIMA for reliability analysis. In 
ARIMA modeling it is possible to convert the 
nonstationary wind speed time series to an associated 
stationary time series without changing basic statistical 
characteristics. Also the ARIMA model can accom-
modate long range correlations. These unique properties 
along with accuracy of the ARIMA model and its 
mathematical soundness provide an upper hand over 
conventional ARMA modeling.  

· The purpose of WF generation capacity reliability 
estimation is to check whether the load demand is met by 
number of units generated. Due to the time variability of 
wind, WF does not provide an equivalent amount of its 
installed capacity consistently. While operating a grid 
connected WF it is worthwhile to know the magnitude of 
wind power and the time at which it was available to 
meet the load. Various probabilistic concepts which are 
used for generation capacity reliability estimation are 
LOLP, LOLE and LOEE. Since reliability indices are 
not much affected by FOR of WTG, it is neglected in 
this analysis. Here reliability evaluation of WF in real 
world circumstance is done by omitting the effect of 
other generation systems from utility grid. The values 
of annual reliability indices are LOLP = 0.3491, LOLE 
= 2178.3220 hours / year, and LOEE = 457.2130 MWh. 
These indices provide an insight to the degree of 
matching of WF with existing load pattern in grid. 

· Even though a number of indices are used for risk 
analysis in WECS, the most significant index is LOLE. 
LOLE is estimated by convolving WF multistate 
equivalent model with load model and the result suggests 
that the risk index improves with decrease in peak load.   

· With the calculation of LOLE the reliability of WF to 
meet the load demand is estimated. The results show that 
reliability contribution of WF to meet the load demand is 
75.13% when peak load is 22MW and the change in 
reliability is only 8.5% for a 50% change in load. It is 
concluded that WF provides better reliability against 
change in load and this result is significant in WF 
planning and scheduling point of view.  

· LCC method is used to determine the cost of wind power 
generated. The estimated cost of wind energy/unit = Rs. 
1.79 and BCR of the WF = 1.55 

· Since BCR of the WF is 1.55, it can be concluded that 
WF is economical for power generation. 
 
Accurate wind speed forecasting and possible WF output 

power predictions are critical factors to improve wind 
energy integration into grid, which in turn modify the 
power system reliability. In the last two decades a lot of 
research work has been done in this area and the accuracy 
of wind power prediction has improved gradually. Further 
research on. 

· Models developed by making use of real time online 
wind speed data have the capability to improve short 
term forecasting. 

· Use of recently developed artificial intelligence algori-
thms to improve forecasting. 

· In addition to that it is important to develop new 
methods for wind speed forecasting in complex terrain. 
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