• Title/Summary/Keyword: wind model

Search Result 3,605, Processing Time 0.029 seconds

A Case Study on the Preliminary Study for Disaster Prevention of Storm Surge: Arrangement of Structures (폭풍해일 방재를 위한 사례적용을 통한 선행연구: 구조물 배치)

  • Young Hyun, Park;Woo-Sun, Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.335-345
    • /
    • 2022
  • Climate change is accelerating worldwide due to the recent rise in global temperature, and the intensity of typhoons is increasing due to the rise in seawater temperature around the Korean Peninsula. An increase in typhoon intensity is expected to increase not only wind damage, but also coastal damage caused by storm surge. Accordingly, in this study, a study of the method of reducing storm surges was conducted for the purpose of disaster prevention in order to respond to the increasing damage from storm surges. Storm surges caused by typhoons can be expected to be affected by structures located on the track of typhoon, and the effects of storm surges were studied by the eastern coast and the barrier island along the coast of the Gulf of Mexico in the United States. This study focused on this aspect and conducted related research, considering that storm surges in the southern coastal area of the Korean Peninsula could be directly or indirectly affected by Jeju Island, which is located on the track of typhoon. In order to analyze the impact of Jeju Island on storm surges, simulations were performed in various situations using a numerical analysis model. The results of using Jeju Island are thought to be able to be used to study new disaster prevention structures that respond to super typhoons.

Early Prediction of Fine Dust Concentration in Seoul using Weather and Fine Dust Information (기상 및 미세먼지 정보를 활용한 서울시의 미세먼지 농도 조기 예측)

  • HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.

Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.507-515
    • /
    • 2008
  • In this study, a method predicting the displacement response of structures from the measured dynamic strain signal is proposed by using mode decomposition technique. Evaluation of bridge stability is normally focused on the bridge completed. However, dynamic loadings including wind and seismic loadings could be exerted to the bridge under construction. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. As previous studies on the prediction of displacement response by using the FBG sensors, the static displacement has been mainly predicted. For predicting the dynamic displacement, it has been known that the measured strain signal includes higher modes and then the predicted dynamic displacement can be inherently contaminated by broad-band noises. To overcome such problem, a mode decomposition technique was used. Mode decomposition technique estimates the displacement response of each mode with mode shape estimated to use POD from strain signal and with the measured strain signal decomposed into mode by EMD. This is a method estimating the total displacement response combined with the each displacement response about the major mode of the structure. In order to examine the mode decomposition technique suggested in this study model experiment was performed.

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

Multi-Objective Onboard Measurement from the Viewpoint of Safety and Efficiency (안전성 및 효율성 관점에서의 다목적 실선 실험)

  • Sang-Won Lee;Kenji Sasa;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.116-118
    • /
    • 2023
  • In recent years, the need for economical and sustainable ship routing has emerged due to the enforced regulations on environmental issues. Despite the development of weather forecasting technology, maritime accidents by rough waves have continued to occur due to incorrect weather forecasts. In this study, onboard measurements are conducted to observe the acutal situation on merchant ships in operation encountering rough waves. The types of measured data include information related to navigation (Ship's position, speed, bearing, rudder angle) and engine (engine revolutions, power, shaft thrust, fuel consumption), weather conditions (wind, waves), and ship motions (roll, pitch, and yaw). These ship experiments was conducted to 28,000 DWT bulk carrier, 63,000 DWT bulk carrier, 20,000 TEU container ship, and 12,000 TEU container ship. The actual ship experiment of each ship is intended to acquire various types of data and utilize them for multi-objective studies related to ship operation. Additionally, in order to confirm the sea conditions, the directional wave spectrum was reproduced using a wave simulation model. Through data collection from ship experiments and wave simulations, various studies could be proceeding such as the measurement for accurate wave information by marine radar and analysis for cargo collapse accidents. In addition, it is expected to be utilized in various themes from the perspective of safety and efficiency in ship operation.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Study on the Improvement of Stow Net Fishing Technique and the Enlargement of Fishing Ground to the Distant Waters - 3 . Field Experiment on the Efficiency of Newly Designed Net and the Stern Operation System (안강망어법의 개량과 어장의 원해로의 확대를 위한 연구 - 3 . 시험어구의 전개성능과 선미식 어업방법에 관한 해상시험 -)

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.75-81
    • /
    • 1989
  • In this paper, the authors describe on the field experiment of the newly designed actual stow net, standing on the result of the model experiment to examine the performance of the conventional net and the newly designed net, presented in two previous reports of this series. Concurrently the additional experiment to find out the possibility of changing of operating system from the side to the stern was carried out. 1. Fundamental shape of the experimented net was 20 times aslarge asthe newly designed model net. Performance of the net was detected by using two ultrasonic echo sounders: one was set downward at the top-most spreader of the shearing device to detect the opening height of the device from the sea bed, and the other sidewise at the starboard top-most spreader to detect the top-most opening width of the devices. Opening height of the newly designed net showed about 3m smaller than the conventional net at slow current of 0.6m/sec and less but it overcome 1m at speedy current of 0.8m/sec and more. Opening width of the newly designed net was 1.4 times as large as that of the conventional net, ant the front projection area of the newly designed net mouth was estimated as 1.3~1.6 times as large as that of the conventional net. 2. The experiment on the stern operating system was tightly limited by the structure of the ship employed in the experiment, which was a stern trawler of 2275 GT. The ship confronted by the wind with main anchor, while the net was put over the stern slipway and the hauling line of shearing device was operated through the top rollers of gallows. The experiment was very suggestive in the view point to mechanize the operating system, and so to decrease the man power except the following question. The of bow-stern line of ship, and that of net is much different.

  • PDF

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir (합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석)

  • Kim, Boram;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1181-1191
    • /
    • 2013
  • This study have implemented finding the optimal water temperature parameter set for Hapcheon dam reservoir using CE-QUAL-W2 model. In particular the sensitivity analysis was carried out for four water temperature parameters of wind sheltering coefficient (WSC), radiation heat coefficient (BETA), light extinction coefficient (EXH2O), heat exchange coefficient at the channel bed (CBHE). Firstly, WSC, BETA, EXH2O shows relatively high sensitivity in common during April to September, and CBHE does during August to November. Secondly, as a result of identifying depth range of parameter influence, BETA and EXH2O show 0~9 m and 8~14 m which is thermocline layer close to water surface, CBHE is deep layer 12 m away from bottom. Finally, applying annual or monthly optimal parameter sets indicates that the bias between two sets does not show much differences for WSC and CBHE parameters, but BETA and EXH2O parameters show $0.20^{\circ}C$ and $0.51^{\circ}C$ of monthly average biases for two parameter sets. In particular the bias reveals to be $0.4^{\circ}C$ and $1.09^{\circ}C$ during May and August that confirms the necessity of use of monthly parameters during that season. It is claimed that the current operational custom use of annual parameters in calibration of reservoir water quality model requires the improvement of using monthly parameters.