• Title/Summary/Keyword: wind induced waves

Search Result 48, Processing Time 0.018 seconds

Effects of Typhoon and Mesoscale Eddy on Generation and Distribution of Near-Inertial Wave Energy in the East Sea (동해에서 태풍과 중규모 소용돌이가 준관성주기파 에너지 생성과 분포에 미치는 영향)

  • SONG, HAJIN;JEON, CHANHYUNG;CHAE, JEONG-YEOB;LEE, EUN-JOO;LEE, KANG-NYEONG;TAKAYAMA, KATSUMI;CHOI, YOUNGSEOK;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.3
    • /
    • pp.55-66
    • /
    • 2020
  • Near-inertial waves (NIW) which are primarily generated by wind can contribute to vertical mixing in the ocean. The energetic NIW can be generated by typhoon due to its strong wind and preferable wind direction changes especially on the right-hand side of the typhoon. Here we investigate the generation and distribution of NIW using the output of a real-time ocean forecasting system. Five-year model outputs during 2013-2017 are analyzed with a focus on cases of energetic NIW generation by the passage of three typhoons (Halong, Goni, and Chaba) over the East Sea. Calculations of wind energy input (${\bar{W}}_I$), and horizontal kinetic energy in the mixed layer (${\bar{HKE}}_{MLD}$) reveal that the spatial distribution of ${\bar{HKE}}_{MLD}$, which is strengthened at the right-hand side of typhoon tracks, is closely related with ${\bar{W}}_I$. Horizontal kinetic energy in the deep layer (${\bar{HKE}}_{DEEP}$) shows patch-shaped distribution mainly located at the southern side of the East Sea. Spatial distribution of ${\bar{HKE}}_{DEEP}$ shows a close relationship with negative relative vorticity regions caused by warm eddies in the upper layer. Monthly-mean ${\bar{HKE}}_{MLD}$ and ${\bar{HKE}}_{DEEP}$ during a typhoon passing over the East Sea shows about 2.5-5.7 times and 1.2-1.6 times larger values than those during summer with no typhoons, respectively. In addition, their magnitudes are respectively about 0.4-1.0 and 0.8-1.0 times from those during winter, suggesting that the typhoon-induced NIW can provide a significant energy to enhance vertical mixing at both the mixed and deep layers during summer.

Detecting Chaotic Motions of a Piecewise-Linear System in the Noisy Fields by Mean Poincare Maps (평균 포인케어맵을 이용한 Noisy Field에서의 chaos거동의 검출방법)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.239-249
    • /
    • 1997
  • The method to distinguish chaotic attractors in the perturbed response behaviors of a piecewise-linear system under combined regular and external randomness is provided and examined. In the noisy fields such as the ocean environment, excitation forces induced by wind, waves and currents contain a finite degree of randomness. Under external random perturbations, the system responses are disturbed, and consequently chaotic signatures in the response attractors are not distinguishable, but rather look just random-like. Mean Poincare map can be utilized to identify such chaotic responses veiled due to the random noise by averaging the noise effect out of the perturbed responses. In this study, the procedure to create mean Poincare map combined with the direct numerical simulations is provided and examined. It is found that mean Poincare maps can successfully distinguish chaotic attractors under stochastic excitations, and also can give the information of limit value of noise intensity with which the chaos signature in system responses vanishes.

  • PDF

Development of Ice Load Generation Module to Evaluate Station-Keeping Performance for Arctic Floating Structures in Time Domain

  • Kang, Hyun Hwa;Lee, Dae-Soo;Lim, Ji-Su;Lee, Seung Jae;Jang, Jinho;Jung, Kwang Hyo;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.394-405
    • /
    • 2020
  • To assess the station-keeping performance of floating structures in the Arctic region, the ice load should be considered along with other environmental loads induced by waves, wind, and currents. However, present methods for performance evaluation in the time domain are not effective in terms of time and cost. An ice load generation module is proposed based on the experimental data measured at the KRISO ice model basin. The developed module was applied to a time domain simulation. Using the results of a captive model test conducted in multiple directions, the statistical characteristics of ice loads were analyzed and processed so that an ice load corresponding to an arbitrary angle of the structure could be generated. The developed module is connected to commercial dynamic analysis software (OrcaFlex) as an external force input. Station-keeping simulation in the time domain was conducted for the same floating structure used in the model test. The mooring system was modeled and included to reflect the designed operation scenario. Simulation results show the effectiveness of the proposed ice generation module and its application to station-keeping performance evaluation. Considering the generated ice load, the designed structure can maintain a heading angle relative to ice up to 4°. Station-keeping performance is enhanced as the heading angle conforms to the drift direction. It is expected that the developed module will be used as a platform to verify station-keeping algorithms for Arctic floating structures with a dynamic positioning system.

Analysis of Reliability of Weather Fields for Typhoon Sanba (1216) (태풍 기상장의 신뢰도 분석: 태풍 산바(1216))

  • Kwon, Kab Keun;Jho, Myeong Hwan;Ryu, Kyong Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.465-480
    • /
    • 2020
  • Numerical simulations of the storm surge and the wave induced by the Typhoon Sanba incident on the south coast of Korea in 2012 are conducted using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbors along the coasts of Korea. For the waves the calculated significant wave heights are compared with the data measured using the wave buoys and the underwater pressure type wave gauge. As a result the JMA-MSM and the NCEP-CFSR weather fields give the highest reliability. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The ECMWF-ERA5, however, reproduces the best convergence belt formed in front of the typhoon. The weather field obtained using JTWC best track information gives the worst agreement.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

Improvement for Impact Assessment of Marine Physical on the Development of Ports and Fishing Harbors in the East Coast (동해안 항만 및 어항 개발사업에 따른 해양물리학적 영향평가 개선방안)

  • Kim, In-Cheol;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Yu, Jun;Lee, Dae-In;Kim, Young-Tae;Kim, Hee-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • This paper suggested the improvement of marine environmental impact assessment in eastern coast as analyzing consultation on the coastal area utilization for development of ports and fishing harbors for 3years in the east coast. The results of survey are only 3cases, 12cases and 16cases each for ocean currents, wave and sounding data. However, for development of ports and fishing harbors in eastern coast, ocean characteristics in eastern coast different than in the West Sea, South Sea is considered to marine environmental impact assessment. For development of ports and fishing harbors in east coast where the influences of ocean currents, wind-driven current and waves are dominant, the effect of the current should be considered to improve the reproducibility of tidal current. The wave should also be considered as an assessment criteria to obtain the validity of project such as harbor tranquility, functionality of breakwaters and stability. In addition, sediment inflow in river and exact water depth data of the ocean should be applied to numerical modeling and set wave-induced current to external force of sediment transport to predict the problems such as the harbor siltation and the coastal erosion considering ocean characteristics in the east coast.

A Study on the Transport Mechanism of Tidal Beach Sediments I. Deukryang Bay, South Coast of Korea (조간대성 해빈 퇴적물의 이동양상에 관한 연구 I. 한국 남해안의 득량만)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho;Cho, Yeong-Gil;Shin, Sang-Eun;Eun, Go-Yo-Na
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 2006
  • In order to understand the transport mechanism of tidal beach sediments in Deukryang Bay, south coast of Korea, beach profiles, surface sediments, sedimentation rates and hydrodynamic conditions have been investigated. The beach is composed of a steep beach face and gentle low-tide terrace, showing general morphologic characteristics of tide dominated beach. Central beach face of an indented coast becomes flattened in summer, but ridge and runnel system developed in other seasons makes the beach profile rather irregular. These seasonal variations of beach profiles and sedimentation rate indicate that beach sedimentation is mainly controlled by both tide and wave processes. Erosion is prevalent in winter when strong wind wave is dominant, while deposition is dominant in other seasons. However, central beach showed an apparent erosional phase in summer. This is caused by strong waves induced by southerly strong winds occurring ephemerally during the summer. On the other hand, sedimentation rates are -89.2 mm/yr on the central beach and 60.5 mm/yr and 38.2 mm/yr on the sides. This result suggests that sediments are eroded on the central beach and subsequently transported to the both sides. Therefore, the central part of Sumun beach, used as a beach bathing site, will be continuously eroded, if nearby dyke continues to prevent the sediment supply from sources.

Analysis of Numerical Experiment for Field Application of Cylindrical Slit Type Block Breakwater (실린더 슬릿형 소파블록 방파제의 실해역 적용을 위한 수치실험분석)

  • Park, Sang-Gil;Lee, Joong-Woo;Nam, Ki-Dae;Kim, Pill-Sung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.703-707
    • /
    • 2009
  • In order to evaluate applicability of cylindrical slit type block breakwater to the field water, which was designed from the previous physical model study, it is analyzed the calmness of harbor area by the numerical model experiment. For a small fishery port in southern coast of Korea a SWAN model using the wave action balance equation was formulated. The reflection and transmission coefficients induced by the physical model test were introduced to the numerical model. The model response with cylindrical slit type breakwater was compared with the impermeable breakwater case and the possibility of water quality improvement through the water circulation by the new structure was investigated. For numerical simulation, parameters of deepwater design wave from the prediction report II for overall deepwater design wave by KORDI were used and wind parameters from the 50years return period observed for 37years(1970~2006) were adopted in the numerical model. The response of west breakwater in Mijo port applying the NE and NNE waves, which were dominant in this area, was analyzed. It was found that the transmission characteristic of designed cylindrical slit breakwater was well presented in the numerical model.