• 제목/요약/키워드: wind induced vibrations

검색결과 104건 처리시간 0.023초

MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge

  • Chen, Z.Q.;Wang, X.Y.;Ko, J.M.;Ni, Y.Q.;Spencer, B.F.;Yang, G.;Hu, J.H.
    • Wind and Structures
    • /
    • 제7권5호
    • /
    • pp.293-304
    • /
    • 2004
  • The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. Several intensive wind-rain induced vibrations had been observed since its open to traffic in 1999. To investigate the possibility of using MR damping systems to reduce cable vibration, a series of field tests were conducted. Based on the promising research results, MR damping system was installed on the longest 156 stay cables of Dongting Lake Bridge in June 2002, making it the worlds first application of MR dampers on cable-stayed bridge to suppress the wind-rain induced cable vibration. As a visible and permanent aspect of the bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes field tests and the implementation of MR damping systems for cable vibration reduction. Three-years reliable service of this system proves its durability.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

강합성 단면을 가진 사장교의 와류진동 발생 예측 (Prediction of Vortex-induced Vibration of the Cable-Stayed Bridge with Steel Composite Deck)

  • 조재영;조영래;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.449-453
    • /
    • 2007
  • After over a century of effort by researchers and engineers, the problem of bluff body flow, in particular vortex shedding frequency, remains almost entirely in the empirical, descriptive realm of knowledge. Computational methods have been systematically applied for vortex-induced vibrations of the cable-stayed bridge with steel composite deck by unsteady wind loadings due to vortex-shedding. The focus of this paper is to predict the vortex-induced vibration of the cable-stayed bridge with steel composite deck based computational fluid dynamics(CFD).

  • PDF

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Rain-wind induced vibration of inclined stay cables -Part II: Mechanical modeling and parameter characterisation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • 제6권6호
    • /
    • pp.485-498
    • /
    • 2003
  • This paper presents a mechanical model of Rain-Wind Induced Vibration (RWIV) of stay cables. It is based on the physical interpretation of the phenomenon as given in Cosentino, et al. (2003, referred as Part I). The model takes into account all the main forces acting on cable, on the upper water rivulet (responsible of the excitation) and the cable-rivulet interaction. It is a simplified (cable cross-sectional and deterministic) representation of the actual (stochastic and three-dimensional) phenomenon. The cable is represented by its cross section and it is subjected to mechanical and aerodynamic (considering the rivulet influence) forces. The rivulet is supposed to oscillate along the cable circumference and it is subjected to inertial and gravity forces, pressure gradients and air-water-cable frictions. The model parameters are calibrated by fitting with experimental results. In order to validate the proposed model and its physical basis, different conditions (wind speed and direction, cable frequency, etc.) have been numerically investigated. The results, which are in very good agreement with the RWIV field observations, confirm the validity of the method and its engineering applicability (to evaluate the RWIV sensitivity of new stays or to retrofit the existing ones). Nevertheless, the practical use of the model probably requires a more accurate calibration of some parameters through new and specifically oriented wind tunnel tests.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

Vortex induced vibration analysis of a cylinder mounted on a flexible rod

  • Zamanian, Mehdi;Garibaldi, Luigi
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.441-455
    • /
    • 2019
  • In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.

Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge

  • Bortoluzzi, Daniele;Casciati, Sara;Elia, Lorenzo;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.459-478
    • /
    • 2015
  • The design of a passive control solution based on tuned mass dampers (TMD's) requires the estimation of the actual masses involved in the undesired vibration. This task may result not so straightforward as expected when the vibration resides in subsets of different structural components. This occurs, for instance, when the goal is to damp out vibrations on stays. The theoretical aspects are first discussed and a design process is formulated. For sake of exemplification, a multiple TMD's configurations is eventually conceived for an existing timber footbridge located in the municipality of Trasaghis (North-Eastern Italy). The bridge span is 83 m and the deck width is 3.82 m.

Vehicle-induced aerodynamic loads on highway sound barriers part1: field experiment

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.435-449
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. A field experiment is carried out with respect to three important factors: vehicle type, vehicle speed and the vehicle-barrier separation distance. Based on the results, the time-history of pressures is given, showing identical characteristics in all cases. Therefore, the vehicle-induced aerodynamic loads acting on the highway sound barrier are summarized as the combination of "head impact" and "wake impact". The head impact appears to have potential features, while the wake impact is influenced by the rotational flow. Then parameters in the experiment are analyzed, showing that the head impact varies with vehicle speed, vehicle-barrier separation distance, vehicle shape and cross-sectional area, while the wake impact is mainly about vehicle-barrier separation distance and vehicle length.