• 제목/요약/키워드: wind generation

검색결과 1,267건 처리시간 0.025초

태양광/풍력 발전설비의 웹기반 모니터링기술 (WEB-BASED MONITORING FOR PHOTOVOLTAIC/WIND POWER GENERATION FACILITIES)

  • 박세준;윤정필;차인수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집
    • /
    • pp.33-37
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested But, hybrid generation system cannot always generate stable output due to the varying weather condition So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

  • PDF

ARIMA Based Wind Speed Modeling for Wind Farm Reliability Analysis and Cost Estimation

  • Rajeevan, A.K.;Shouri, P.V;Nair, Usha
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.869-877
    • /
    • 2016
  • Necessity has compelled man to improve upon the art of tapping wind energy for power generation; an apt reliever of strain exerted on the non-renewable fossil fuel. The power generation in a Wind Farm (WF) depends on site and wind velocity which varies with time and season which in turn determine wind power modeling. It implies, the development of an accurate wind speed model to predict wind power fluctuations at a particular site is significant. In this paper, Box-Jenkins ARIMA (Auto Regressive Integrated Moving Average) time series model for wind speed is developed for a 99MW wind farm in the southern region of India. Because of the uncertainty in wind power developed, the economic viability and reliability of power generation is significant. Life Cycle Costing (LCC) method is used to determine the economic viability of WF generated power. Reliability models of WF are developed with the help of load curve of the utility grid and Capacity Outage Probability Table (COPT). ARIMA wind speed model is used for developing COPT. The values of annual reliability indices and variations of risk index of the WF with system peak load are calculated. Such reliability models of large WF can be used in generation system planning.

지형공간정보체계를 이용한 풍력 발전 시설의 입지 분석 (Location Analysis for Wind Power System Using Geo-Spatial Information System)

  • 이수주;송석진;강인준
    • 대한공간정보학회지
    • /
    • 제18권2호
    • /
    • pp.107-112
    • /
    • 2010
  • 풍력발전은 자연 상태의 무공해 에너지원이며 신재생에너지 중 가장 경제성이 높은 에너지원이다. 최근 소형 풍력 발전의 개발에 따라 단지나 초고층 건축물에도 풍력 발전 시설 설치가 가능해졌다. 이러한 지역에서의 효율적인 발전을 위해서는 적절한 입지 분석이 필요하다. 본 연구에서는 부산시를 대상으로 계층적 분석 기법을 이용하여 풍력 발전 시 요구되어지는 요인들의 상대적 가중치를 산정하고 부산시의 풍속과 풍향의 특징을 나타내었고 지형 공간정보체계를 이용하여 강서구, 기장군, 사하구 지역 내에서 녹산동, 철마면, 다대1동으로 후보지를 선정하였다.

장벽 방전형 공기 펌프의 이온풍 발생에 미치는 방전전극 형상의 영향 (Effect of Discharge Electrode Shape of a Barrier Discharge Type Gas Pump on Ionic Wind Generation)

  • 황덕현;문재덕
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.994-998
    • /
    • 2009
  • Existing cooling technologies no longer provide adequate heat dissipation due to excessive heat generation caused by the growing component density on electronic devices. An ionic gas pump can be used for the thermal management of micro-electronic devices, since the size of pump can be reduced to a micrometer scale. In addition, the gas pump allows for gas flow control and generation without moving parts. This ideal property of gas pump gives rise to a variety of applications. However, all these applications require maximizing the wind velocity of gas pump. In this study a barrier discharge type gas pump, with a needle-shaped corona electrode instead of a plate-shaped corona electrode, has been investigated by focusing on the corona electrode shape on the wind velocity and wind generation yield. As a result, the enhanced wind velocity and wind generation yield of 1.76 and 3.37 times were obtained with the needle-shaped corona electrode as compared with the plate-shaped corona electrode of the proposed barrier discharge type gas pump.

풍력발전이 연계된 배전선로 전압 및 과도상태 해석 (Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation)

  • 김세호;나경윤;김건훈
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.

POD analysis of crosswind forces on a tall building with square and H-shaped cross sections

  • Cheng, L.;Lam, K.M.;Wong, S.Y.
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.63-84
    • /
    • 2015
  • The shape of a tall building has significant impact on wind force generation and wind-induced dynamic response. To study the effect of recessed cavities, wind excitations on a wind-tunnel model of an H-section tall building were compared with those on a square-section building model. Characteristics of the fluctuating wind pressures on the side faces of the two tall buildings and their role in the generation of crosswind forces on the buildings were investigated with the space-time statistical tool of proper orthogonal decomposition (POD). This paper also compares the use of different pressure data sets for POD analysis in situations where pressures on two different surfaces are responsible for the generation of a wind force. The first POD mode is found to dominate the generation of crosswind excitation on the buildings.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측 (Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed)

  • 김영주;정민아;손남례
    • 한국통신학회논문지
    • /
    • 제42권5호
    • /
    • pp.1085-1092
    • /
    • 2017
  • 본 논문은 풍력발전예측의 정확도 개선을 위하여 바람의 특성을 반영한 풍력발전량예측 방법을 제안한다. 제안한 방법은 크게 바람의 특성을 추출하는 부분과 발전량을 예측하는 부분으로 구성된다. 바람의 특성을 추출하는 부분은 발전량, 풍향과 풍속의 상관분석을 이용한다. 풍향과 풍속의 상관관계를 근거로 K-means 방법으로 클러스터링하여 특징 벡터를 추출한다. 예측하는 부분은 임의의 실수값을 예측 할 수 있도록 SVM을 일반화 한 SVR을 이용하여 기계학습을 한다. 기계학습은 바람의 특성을 반영한 제안한 방법과 바람의 특성을 반영하지 않은 기존방법을 비교 실험하였다. 또한, 제안한 방법의 정확도와 타당성을 검증하기 위하여 장소가 상이한 제주도 풍력발전단지 3지역에서 수집된 데이터를 사용하였다. 실험결과, 제안한 방법의 오차가 일반적인 풍력발전예측 오차보다 개선되었다.

Capacity Firming for Wind Generation using One-Step Model Predictive Control and Battery Energy Storage System

  • Robles, Micro Daryl;Kim, Jung-Su;Song, Hwachang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.2043-2050
    • /
    • 2017
  • This paper presents two MPC (Model Predictive Control) based charging and discharging algorithms of BESS (Battery Energy Storage System) for capacity firming of wind generation. To deal with the intermittency of the output of wind generation, a single BESS is employed. The proposed algorithms not only make the output of combined systems of wind generation and BESS track the predefined reference, but also keep the SoC (State of Charge) of BESS within its physical limitation. Since the proposed algorithms are both presented in simple if-then statements which are the optimal solutions of related optimization problems, they are both easy to implement in a real-time system. Finally, simulations of the two strategies are done using a realistic wind farm library and a BESS model. The results on both simulations show that the proposed algorithms effectively achieve capacity firming while fulfilling all physical constraints.

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.