• Title/Summary/Keyword: wind estimator

Search Result 28, Processing Time 0.023 seconds

Optimization of Glide Performance using Wind Estimator for Unpowerd Air Vehicle without Pitot-Tube (바람센서가 없는 무추력 비행체의 활공 시 대기속도 추정을 통한 유도성능 향상)

  • Kim, Boo-Min;Jin, Jae-Hyun;Park, Jeong-Ho;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • As designing PID control on aircraft, we consider a gain scheduling on altitude and velocity. If pitot tube is not installed in the unpowered air vehicle, the control performance is reduced by the difference between ground speed and air speed with a wind considered. In this paper, a simple guidance controller (LOS: Line of Sight) and the wind estimator using Kalman filter are designed. And we minimize the wind effect through the estimator. Finally, we perform the 6-DOF nonlinear simulation with the wind model to verify the performance of the controller with the wind estimator.

The Gringorten estimator revisited

  • Cook, Nicholas John;Harris, Raymond Ian
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.355-372
    • /
    • 2013
  • The Gringorten estimator has been extensively used in extreme value analysis of wind speed records to obtain unbiased estimates of design wind speeds. This paper reviews the derivation of the Gringorten estimator for the mean plotting position of extremes drawn from parents of the exponential type and demonstrates how it eliminates most of the bias caused by the classical Weibull estimator. It is shown that the coefficients in the Gringorten estimator are the asymptotic values for infinite sample sizes, whereas the estimator is most often used for small sample sizes. The principles used by Gringorten are used to derive a new Consistent Linear Unbiased Estimator (CLUE) for the mean plotting positions for the Fisher Tippett Type 1, Exponential and Weibull distributions and for the associated standard deviations. Analytical and Bootstrap methods are used to calibrate the bias error in each of the estimators and to show that the CLUE are accurate to better than 1%.

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Study on the Available Power of a Wind Turbine for Wind Farm Control (풍력단지 제어를 위한 생산가능 출력에 대한 연구)

  • Oh, Yong Oon;Paek, In Su;Nam, Yoon Su;La, Yo Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A study on the available power of a wind turbine to be used for wind farm control was performed in this study, To accurately estimate the available power it is important to obtain a suitable wind which represents the three dimensional wind that the wind turbine rotor faces and also used to calculate the power. For this, two different models, the equivalent wind and the wind speed estimator were constructed and used for dynamic simulation using matlab simulink. From the comparison of the simulation result with that from a commercial code based on multi-body dynamics, it was found that using the hub height wind to estimate available power from a turbine results in high frequency components in the power prediction which is, in reality, filtered out by the rotor inertia. It was also found that the wind speed estimator yielded less error than the equivalent wind when compared with the result from the commercial code.

An integrator based wind speed estimator for wind turbine control

  • Elmaati, Younes Ait;El Bahir, Lhoussain;Faitah, Khalid
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.443-460
    • /
    • 2015
  • In this paper, an integrator based method to estimate the effective wind speed in wind turbine systems is proposed. First, the aerodynamic torque was accurately estimated through a proportional gain based observer where the generator speed is the measured output of the system. The torque signal contains not only useful frequencies of the wind, but also high frequencies and the ones due to structural vibration. The useful information of the wind signal is low frequency. A spectral analysis permitted the determination of the useful frequencies. The high frequencies were then filtered before introducing the torque signal in the wind speed observer. The desired effective wind speed was extracted through an integrator based observer using the previously estimated aerodynamic torque. The strength of the method is to avoid numerical solutions used in literature of the wind speed estimation. The effectiveness of the proposed wind speed estimator and its use to control the generator speed has been tested under turbulent situations using the FAST software (Fatigue, Aerodynamics, Structures, and Turbulence), for large scale Megawatt turbine.

Sensorless Vector Control of Induction Motors for Wind Energy Applications Using MRAS and ASO

  • Jeong, Il-Woo;Choi, Won-Shik;Park, Ki-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.873-881
    • /
    • 2014
  • Speed sensorless modes of operation are becoming standard solution in the area of electric drives. This paper presents flux estimator and speed estimator for the speed sensorless vector control of induction motors. The proposed sensorless methods are based on the model reference adaptive system (MRAS) observer and adaptive speed observer (ASO). The proposed speed estimation algorithm can be employed in the power control of grid connected induction generator for wind power applications. Two proposed schemes are verified through computer simulation PSIM and compared their simulation results.

Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers

  • Aydin, Demet
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.383-395
    • /
    • 2018
  • An accurate determination of wind speed distribution is the basis for an evaluation of the wind energy potential required to design a wind turbine, so it is important to estimate unknown parameters of wind speed distribution. In this paper, Gumbel distribution is used in modelling wind speed data, and alternative robust estimation methods to estimate its parameters are considered. The methodologies used to obtain the estimators of the parameters are least absolute deviation, weighted least absolute deviation, median/MAD and least median of squares. The performances of the estimators are compared with traditional estimation methods (i.e., maximum likelihood and least squares) according to bias, mean square deviation and total mean square deviation criteria using a Monte-Carlo simulation study for the data with and without outliers. The simulation results show that least median of squares and median/MAD estimators are more efficient than others for data with outliers in many cases. However, median/MAD estimator is not consistent for location parameter of Gumbel distribution in all cases. In real data application, it is firstly demonstrated that Gumbel distribution fits the daily mean wind speed data well and is also better one to model the data than Weibull distribution with respect to the root mean square error and coefficient of determination criteria. Next, the wind data modified by outliers is analysed to show the performance of the proposed estimators by using numerical and graphical methods.

Economic analysis of jeju offshore pilot run wind farm by sensitivity analysis (민감도 분석을 적용한 제주 연안 풍력단지 설계의 경제성 분석)

  • Lee, K.H.;Park, J.H.;Jin, J.W.;Kwon, K.R.;Choi, K.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.13-19
    • /
    • 2012
  • In this paper, the offshore wind farms have been designed by using WindPRO with the help of real wind data measurements at Jeju Costal area by calculating the annual energy production for exact economic evaluation. In order to achieve benefit of wind farm, the annual revenue for power generation have been calculated with SMP and REC value. And construction cost has derived from the real wind farm project case. Also O&M cost has been estimated by OMCE (Operating & Maintenance Cost Estimator) to get accurate cost of wind farm. Economic evaluation of wind farms have been performed by comparing above parameters. In addition, sensitivity analysis calculating the effect of these factors has also been carried out.

The Time Variant Power Signal Processing of Wind Generator using Buneman Frequency Estimator Algorithm (부너맨 주파수 추정 알고리듬을 이용한 풍력발전기 가변 전력신호 처리에 관한 연구)

  • Choi, Sang-Yule;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.138-146
    • /
    • 2010
  • On wind turbine generators, the speed and volume of the wind affect the turbine angle speed which finally determines the output level of the electric power. However it is very difficult to forecast correctly the future power output and quality based on previous fixed sampling methods. This paper proposes a variable sampling method based on Buneman frequency estimation algorithm to reflect the variations of the frequency and amplitude on wind power outputs. The proposed method is also verified through the performance test by comparing with the results from previous fixed sampling methods and the real measurement data.

Inverse active wind load inputs estimation of the multilayer shearing stress structure

  • Chen, Tsung-Chien;Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.19-33
    • /
    • 2008
  • This research investigates the adaptive input estimation method applied to the multilayer shearing stress structure. This method is to estimate the values of wind load inputs by analyzing the active reaction of the system. The Kalman filter without the input term and the adaptive weighted recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the adaptive weighted recursive least square estimator to estimate the wind load input over time. This combined method can effectively estimate the wind loads to the structure system to enhance the reliability of the system active performance analysis. The forms of the simulated inputs (loads) in this paper include the periodic sinusoidal wave, the decaying exponent, the random combination of the sinusoidal wave and the decaying exponent, etc. The active reaction computed plus the simulation error is regard as the simulated measurement and is applied to the input estimation algorithm to implement the numerical simulation of the inverse input estimation process. The availability and the precision of the input estimation method proposed in this research can be verified by comparing the actual value and the one obtained by numerical simulation.