• Title/Summary/Keyword: wind environment

검색결과 1,930건 처리시간 0.027초

Optimization Calculations and Machine Learning Aimed at Reduction of Wind Forces Acting on Tall Buildings and Mitigation of Wind Environment

  • Tanaka, Hideyuki;Matsuoka, Yasutomo;Kawakami, Takuma;Azegami, Yasuhiko;Yamamoto, Masashi;Ohtake, Kazuo;Sone, Takayuki
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.291-302
    • /
    • 2019
  • We performed calculations combining optimization technologies and Computational Fluid Dynamics (CFD) aimed at reducing wind forces and mitigating wind environments (local strong winds) around buildings. However, the Reynolds Averaged Navier-stokes Simulation (RANS), which seems somewhat inaccurate, needs to be used to create a realistic CFD optimization tool. Therefore, in this study we explored the possibilities of optimizing calculations using RANS. We were able to demonstrate that building configurations advantageous to wind forces could be predicted even with RANS. We also demonstrated that building layouts was more effective than building configurations in mitigating local strong winds around tall buildings. Additionally, we used the Convolutional Neural Network (CNN) as an airflow prediction method alternative to CFD in order to increase the speed of optimization calculations, and validated its prediction accuracy.

비균질 자료의 변분자료동화를 적용한 남서해안 풍력자원평가 및 예측에 관한 수치연구 (Numerical Study on Wind Resources and Forecast Around Coastal Area Applying Inhomogeneous Data to Variational Data Assimilation)

  • 박순영;이화운;김동혁;이순환
    • 한국환경과학회지
    • /
    • 제19권8호
    • /
    • pp.983-999
    • /
    • 2010
  • Wind power energy is one of the favorable and fast growing renewable energies. It is most important for exact analysis of wind to evaluate and forecast the wind power energy. The purpose of this study is to improve the performance of numerical atmospheric model by data assimilation over a complex coastal area. The benefit of the profiler is its high temporal resolution and dense observation data at the lower troposphere. Three wind profiler sites used in this study are inhomogeneously situated near south-western coastal area of Korean Peninsula. The method of the data assimilation for using the profiler to the model simulation is the three-dimensional variational data assimilation (3DVAR). The experiment of two cases, with/without assimilation, were conducted for how to effect on model results with wind profiler data. It was found that the assimilated case shows the more reasonable results than the other case compared with vertical observation and surface Automatic Weather Station(AWS) data. Although the effect of sonde data was better than profiler at a higher altitude, the profiler data improves the model performance at lower atmosphere. Comparison with the results of 4 June and 5 June suggests that the efficiency with hourly assimilated profiler data is strongly influenced by synoptic conditions. The reduction rate of Normalized Mean Error(NME), mean bias normalized by averaged wind speed of observation, on 4 June was 28% which was larger than 13% of 5 June. In order to examine the difference in wind power energy, the wind power density(WPD) was calculated and compared.

풍하중 산정을 위한 한반도 단독주택의 대표유형 선정 (A Selection of Representative Type the Korean Peninsula Detached Dwelling for Estimate the Wind Load)

  • 박종길;정우식;최효진
    • 한국환경과학회지
    • /
    • 제18권12호
    • /
    • pp.1417-1426
    • /
    • 2009
  • As the damages due to natural disasters continue to increase, a growing interest is being witnessed in such studies that focus on preventive measures to reduce damages rather than on their recovery. As such, the U.S. has been actively conducting projects to develop new models that can forecast potential damages due to natural disasters and widely employing them in actual cases. With no specific models developed in Korea yet, this study aimed to introduce an overseas typhoon model as part of the advanced efforts and apply it the actual cases occurring across the nation. This model estimates wind loads by measuring the impact of a strong wind upon buildings, and measurements require a number of parameters. Those parameters should include the types and dimensions of buildings and the type of the roofs. As for the FPHLM(Florida Public Hurricane Loss Model), a precedent model for our study, we were able to take advantage of number of the statistics and detailed categorizations on the residential buildings in the U.S., which enabled us to select the representative building types and produce their wind loads. With no sufficient relevant statistics available for the nation, however, we may not be able to readily measure the wind loads on the nation's residential buildings. Therefore, this study tried to choose the representative types, heights and dimensions of the buildings for the measurement of wind loads. We consequently came up with a representative house having an area between 62.81 and $95.56m^2$, either a flat roof or hip roof, a height of 2.6 m, an side ratio of 1.5, and the width and length of the mean $85m^2$ sized house being 11,300 mm and 7,530 mm, respectively.

부산해안지역 워터프런트의 풍환경 분석 연구 -해운대, 수영만, 광안리 대상으로- (Analysis of Wind Environment at Waterfront in Busan - About Haeundae, Suyoungman and Gwanganli -)

  • 도근영
    • 한국항해항만학회지
    • /
    • 제33권5호
    • /
    • pp.369-374
    • /
    • 2009
  • 최근 워터프런트의 개방성과 자연환경을 만끽하기 위한 중요한 공간으로서 오픈스페이스와 이에 연계된 노천카페 및 야외레스토랑의 계획이 많아지고 있다. 그러나 워터프런트는 낮은 기온, 강풍, 강한 일사 등 도심 및 내륙지역과는 다른 기후특성을 가지고 있기 때문에 노천카페, 야외레스토랑 등을 계획할 때에는 대상 워터프런트의 기후특성, 특히 풍환경에 대한 검토가 필요하다. 본 연구는 부산의 대표적 워터프론트인 해운대, 수영만, 광안리 지역을 대상으로 오픈스페이스와 노천카페 및 야외레스토랑 계획을 위한 워터프런트의 풍환경에 대해 검토하였다. 검토경과를 요약하면 아래와 같다. 1)해운대-광안리까지의 워터프런트는 야외레스토랑 등에 적합한 지역이다. 2)3월말에서 11월 까지가 야외레스토랑 등을 이용하기에 적합한 시기이다.

A Review on the Building Wind Impact through On-site Monitoring in Haeundae Marine City: 2021 12th Typhoon OMAIS Case Study

  • Kim, Jongyeong;Kang, Byeonggug;Kwon, Yongju;Lee, Seungbi;Kwon, Soonchul
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.414-425
    • /
    • 2021
  • Overcrowding of high-rise buildings in urban zones change the airflow pattern in the surrounding areas. This causes building wind, which adversely affects the wind environment. Building wind can generate more serious social damage under extreme weather conditions such as typhoons. In this study, to analyze the wind speed and wind speed ratio quantitatively, we installed five anemometers in Haeundae, where high-rise buildings are dense, and conducted on-site monitoring in the event of typhoon OMAIS to determine the characteristics of wind over skyscraper towers surround the other buildings. At point M-2, where the strongest wind speed was measured, the maximum average wind speed in 1 min was observed to be 28.99 m/s, which was 1.7 times stronger than that at the ocean observatory, of 17.0 m/s, at the same time. Furthermore, when the wind speed at the ocean observatory was 8.2 m/s, a strong wind speed of 24 m/s was blowing at point M-2, and the wind speed ratio compared to that at the ocean observatory was 2.92. It is judged that winds 2-3 times stronger than those at the surrounding areas can be induced under certain conditions due to the building wind effect. To verify the degree of wind speed, we introduced the Beaufort wind scale. The Beaufort numbers of wind speed data for the ocean observatory were mostly distributed from 2 to 6, and the maximum value was 8; however, for the observation point, values from 9 to 11 were observed. Through this study, it was possible to determine the characteristics of the wind environment in the area around high-rise buildings due to the building wind effect.

풍동실험을 통한 공동주택 지하주차장의 자연환기 성능 연구 (Experimental Study on Wind-driven Ventilation in Basement Parking Lots of Apartment)

  • 이시웅;노지웅
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.103-107
    • /
    • 2004
  • This paper aims for evaluating the wind-driven ventilation in basement parking lots of apartment. Wind tunnel tests coupled with tracer gas method were conducted, and classified by wind directions and opening types. The test results showed that, as for wind-driven ventilations, stack type openings were more successful than scuttle vent. Finally, according to Weibull distribution in Seoul, yearly averaged wind-driven ventilation rate was calculated.

엘니뇨/라니냐 강도 변화에 따른 국지적 풍력자원의 변동 (Analytic Study on the Variation of Regional Wind Resources Associated with the Change of El Niño/La Niña Intensity)

  • 이순환;이화운;김동혁;김민정;김현구
    • 한국지구과학회지
    • /
    • 제32권2호
    • /
    • pp.180-189
    • /
    • 2011
  • 엘니뇨/라니냐의 강도 변화에 따른 한반도의 풍력자원 변동성을 확인하기 위하여 20년간 장기 지상관측자료를 바탕으로 해석적인 분석을 실시하였다. 장기적으로 유라시아 대륙의 풍속 약화경향에도 불구하고 한반도는 최근 10년간 풍속 증가가 약하게 나타났다. 그리고 엘니뇨와 라니냐에 따른 한반도 풍속은 계절적으로 다양한 형태를 나타낸다. 지역적으로 음의 해수면 온도 아노말리를 나타내는 라니냐가 발생하면 한반도내 지상풍속이 빨라지는 경향을 가진다. 그리고 기후변화에 대한 풍속은 중규모의 강제력이 가장 미약한 산악지역에서 가장 민감하게 나타난다.

근대기상관측 이후 장기기상자료를 이용한 한반도 영향태풍의 강풍특성 (Characteristics of Strong Winds Caused by Typhoons on the Korean Peninsula Using Long-term Meteorological Data)

  • 이은지;정우식
    • 한국환경과학회지
    • /
    • 제30권9호
    • /
    • pp.753-762
    • /
    • 2021
  • This study analyzed the characteristics of strong winds accompanying typhoons for a period of 116 years, from 1904 to 2019, when modern weather observations began in Korea. Analysis shows that the average wind speed and high wind rate caused by typhoons were higher over the sea and in the coastal areas than in the inland areas. The average wind speed was higher over the West Sea than over the South Sea, but the rate of strong wind was greater over the South Sea than over the West Sea. The average wind speed decreased by 1980 and recently increased, while the rate of strong winds decreased by 1985 and has subsequently increased. By season, the strong winds in autumn (september and october) were stronger than those in summer (june, july, and august). Strong winds were also more frequent in autumn than in summer. The analysis of the changes in strong winds caused by typhoons since the 1960s shows that the speed of strong winds in august, september, and october has increased more recently than in the past four cycles. In particular, the increase in wind speed was evident in fall (september and october). Analysis of the results suggests that the stronger wind is due to the effects of autumn typhoons, and the increased possibility of strong winds.

W국외 모니터링 사례를 통한 해상풍력발전의 환경적 영향 고찰 (A Study on the Environmental Impact of Offshore Wind Farms Through Monitoring Case in Overseas Country)

  • 맹준호;조범준;임오정;서재인
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권4호
    • /
    • pp.276-289
    • /
    • 2013
  • 해상풍력발전 단지를 개발함에 있어 전력수급과 경제성 논리에만 초점이 맞춰짐으로써 여러 가지 환경적 문제들이 발생하고 있으며, 이에 따른 지역사회의 갈등이 유발되고 있는 실정이다. 특히 최근에 국내 해역의 풍황과 해황 조건 등을 중심으로 해상풍력에 대한 입지와 개발량에 대한 연구가 이루어져 왔으나, 해양환경 및 해양생태계에 미치는 영향에 대한 연구는 매우 부족하다. 유럽의 해상풍력발전 선진국에서는 개발 사업에 뒤따르는 환경 모니터링이 활발히 진행되고 있는 데 비해, 국내에서는 해상풍력을 설치하고 운영할 때에 발생할 수 있는 환경적 영향에 관한 모니터링 자료가 전무하다. 따라서 본 연구에서는 국외 해상풍력의 모니터링 사례 및 참고문헌의 사례를 분석함으로써 공사 시와 운영 시의 환경적 영향과 국내 해역에 적합한 환경영향평가 단계에서의 가이드라인을 제시하였다. 이에 따라 궁극적으로는 해상풍력개발에 따른 환경영향을 최소화하고 환경영향평가의 행정절차에 소요되는 협의기간을 단축시키는 데에 목적이 있다.

동심원 등가풍속을 이용한 대기안정도에 따른 풍력자원 변화에 관한 연구 (Accounting for the Atmospheric Stability in Wind Resource Variations and Its Impacts on the Power Generation by Concentric Equivalent Wind Speed)

  • 류건화;김동혁;이화운;박순영;유정우;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제36권1호
    • /
    • pp.49-61
    • /
    • 2016
  • The power production using hub height wind speed tends to be overestimated than actual power production. It is because the hub height wind speed cannot represent vertical wind shear and blade tip loss that aerodynamics characteristic on the wind turbine. The commercial CFD model WindSim is used to compare and analyze each power production. A classification of atmospheric stability is accomplished by Monin-Obukhov length. The concentric wind speed constantly represents low value than horizontal equivalent wind speed or hub height wind speed, and also relevant to power production. The difference between hub height wind speed and concentric equivalent wind speed is higher in nighttime than daytime. Under the strongly convective state, power production is lower than under the stable state, especially using the concentric equivalent wind speed. Using the concentric equivalent wind speed considering vertical wind shear and blade tip loss is well estimated to decide suitable area for constructing wind farm.