매년 발생하는 태풍이나 강풍에 의해 저층건물의 피해가 증가하고 있는 실정이다. 본 논문에서는 편지붕에 대한 높이변화에 따른 위치별 풍압계수 분포와 하중부담면적 변화에 따른 풍압계수의 평가를 통하여 현재 풍하중기준과 비교해보고자 한다. 편지붕의 위치별 특징을 알아보기 위해 6개 영역으로 나누어서 분석을 하였으며 지붕에서 각도가 높은(high)모서리 (HC)가 낮은 (low)모서리(LC) 보다 25%정도 크게 나타나고 있었다. AIK하중기준과 위치별 리크 외압계수 분포가 동일한 양상으로 나타나고 있지만 실험결과 HC 영역의 경우 하중기준보다 40%정도 작은 값을, LC영역의 경우 하중기준보다 37%정도 큰 값을 나타내고 있었다.
A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. The status of the tornado-structure interaction and various models of the tornado wind field found in literature are surveyed. Three dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of a tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by an semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine combined vortex model. The tornado is made to translate at a $0^{\circ}$ and $45^{\circ}$ angle, and the grid resolution is refined. Some flow visualizations are also reported to understand the flow behavior around the cube.
In the present study, turbulent flows around cubic and L-shape buildings were simulated numerically. Standard ${\kappa}$-$\varepsilon$, RNG ${\kappa}$-$\varepsilon$, LES turbulence models were adopted for the present simulation. The wind pressure coefficients from these results were compared with the available experimental data. The result of RNG ${\kappa}$-$\varepsilon$ and LES turbulent models gave better prediction than that of standard ${\kappa}$-$\varepsilon$ turbulent model which is widely used in the turbulent flow simulation.
In commercial areas, outdoor units are typically installed close to one another in the narrow space between buildings due to insufficient regulations. This makes it difficult to ventilate the discharge airflow, which may lead to deterioration of the performance of outdoor units. This study conducted CFD simulation to analyze the thermal environment according to the installation distance of the outdoor unit. The outdoor unit was installed in the space between buildings, and the thermal environment was analyzed by changing installation distance and wind speed. The performance of the outdoor unit was evaluated by measuring the on-coil temperature. The results show that the closer the distance between outdoor units, the higher the condenser on-coil temperature. Also, the on-coil temperature appeared to rise dramatically at lower wind speed.
본 연구에서는 전산유체역학 모델을 이용하여 도시 재정비에 따른 신축 건물이 주변 대기 흐름에 미치는 영향을 조사하였다. 이를 위하여 지리정보시스템 자료로부터 추출한 건물 자료를 전산유체역학 모델의 입력 자료로 사용하였고 4가지 풍향 (서풍, 남풍, 동풍, 북풍)에 대한 수치 시뮬레이션을 수행하였다. 도시 재정비가 이루어지기 전에는 저층 건물이 밀집되었기 때문에 건물에 의한 마찰 효과가 증가하면서 건물 사이 공간의 풍속이 현저하게 감소하였다. 도시 재정비 계획에 따라 고층 건축물이 신축되고 밀집된 건물이 정비되면서 보행자 고도에서는 건물에 의한 마찰 효과가 감소하였다. 그리고 질량연속방정식을 만족시키기 위한 channeling 효과가 부분적으로 나타나면서 도시 재정비 지역의 풍속이 증가하였다. 상층에서는 고층 건물이 신축되면서 건물 사이에서 일어나는 channeling 효과에 의해 부분적으로 풍속이 증가하였다. 그러나 도시 재정비 지역의 풍하지역에서는 건물에 의해 형성되는 재순환 영역 (recirculation region)과 마찰 효과에 의해 넓은 지역에서 풍속이 현저하게 감소하였다.
산이나 건물과 같은 지형지물에 의해 발생하는 클러터는 대기 상태와 무관한 오염된 자료로 간주된다. 클러터 신호를 줄이기 위한 기본적인 방법은 윈드프로파일러 주위에 클러터 펜스를 설치하는 것이다. 클러터 펜스가 윈드프로파일러 관측 자료에 미치는 효과를 조사하기 위해 클러터 펜스 설치 전과 후의 윈드프로파일러 바람 벡터 수집률과 바람 벡터의 정확도를 고도별로 조사하였다. 윈드프로파일러의 클러터 펜스는 자료 수집률 뿐만 아니라 자료의 품질을 향상시키는데 기여하였다.
본 연구는 세계기상기구(World Meteorological Organization, WMO) 분류 지침에 따라 10지점의 종관기상관측소(Automated Synoptic Observing System, ASOS) 관측 환경을 5단계로 분류하였다. 장애물(지형, 건물 등)과 지표 피복 유형은 일조 시간, 기온, 지상 바람의 관측 환경을 평가하는 주요 요인이었다. 따라서, WMO 분류 지침에 따라 ASOS를 평가하기 위해서 지형, 건물, 토지 피복 유형에 대한 수치 지도를 사용했다. 일조 시간의 관측 환경은 일조 고도각이 낮은 일출과 일몰 시간대에 주변 건물 영향을 가장 많이 받았다. 기온 관측 환경은 태양 고도각뿐만 아니라 열/수원과 ASOS 사이의 거리를 기준으로 결정되었다. 본 연구에서 고려한 ASOS 주변에는 수원이 없었다. 일부 ASOS 근처에 있는 열원은 관찰 환경에 영향을 미칠만큼 크지 않았다. ASOS 주변의 거칠기 길이와 주변 건물과 ASOS 사이의 거리를 기반으로 지상 바람 관측 환경을 평가했다. 대부분의 ASOS는 주변보다 높은 고도에 놓여 있으며 ASOS 주변의 거칠기 길이는 최상의 수준을 위한 조건을 충족할 만큼 충분히 작았다.
In this study, the characteristics of flows around building groups are investigated using a computational fluid dynamics (CFD) model. For this, building groups with different volumetric ratios in a fixed area are considered. As the volumetric ratio of the building group increases, the region affected by the building group is widened. However, the wind-speed reduced area rather decreases with the volumetric ratio near the ground bottom (z ${\lesssim}$ 0.7H, here, H is the height of the building group) and, above 0.7H, it increases. As the volumetric ratio decreases (that is, space between buildings was widened), the size of recirculation region decreases but flow recovery is delayed, resulting in the wider wind-speed reduced area. The increase in the volumetric ratio results in larger drag force on the flow above the roof level, consequently reducing wind speed above the roof level. However, above z ${\gtrsim}$ 1.7H, wind speed increases with the volumetric ratio for satisfying mass conservation, resultantly increasing turbulent kinetic energy there. Inside the building groups, wind speed decreased with the volumetric ratio and averaged wind speed is parameterized in terms of the volumetric ratio and background flow speed. The parameterization method is applied to producing averaged wind speed for 80 urban areas in 7 cities in Korea, showing relatively good performance.
The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$$$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.
도심지의 열섬(Heat Island)현상과 연안지역의 해풍(海風)의 영향 때문에, 부산, 인천, 목포 등 연안도시의 도심지역과 연안지역의 각 외기 상태가 서로 다르게 나타난다. 이러한 외기조건은 건물의 냉방부하, 난방부하, 전력소비량 등에 직접적인 영향을 미치기 때문에, 에너지절약을 위한 건물설계와 운전방법개발을 위해서는 각 지역에 위치한 건물의 에너지소비특성을 파악해야만 한다. 본 연구에서는 연안지역 아파트의 전력소비량에 주목하였고, 부산광역시 영도구에 위치한 세대수가 100세대 이상인 22개 아파트 단지를 대상으로 기간별, 기능별 전력소비량을 조사하였다. 22개 아파트 전체의 세대내 최대전력소비량은 8월에 발생하고 있으나, 공용 최대전력소비량은 1월에 발생하고 있음을 알수 있었다. 한편 연안지역에서는 여름철에 해풍에 의한 자연환기로 인해 냉방용 전력소비가 감소할 것으로 예상하였으나, 조사결과에서는 여름철에 최대부하가 발생하였는데, 이는 해풍에 포함된 염분의 피해를 예방하기 위해 창문을 닫고 전기구동 에어컨으로 냉방하기 때문인 것으로 파악되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.