• 제목/요약/키워드: wild plant

검색결과 1,244건 처리시간 0.042초

The Expression of Egg Plant Flavonoid 3',5'-Hydroxylase Gene in Tobacco Plants (Nicotiana tabacum cv. Xanthi)

  • Park, Sun-Young;Kim, Younghee
    • Journal of Plant Biotechnology
    • /
    • 제2권1호
    • /
    • pp.25-28
    • /
    • 2000
  • The anthocyanin gene encoding flavonoid 3',5'-hydroxylase(F3,5H) was normally expressed in Nicotiana tobacco (Xanthi) plants cocultivated with Agrobacterium tumefaciens LBA4404 carrying egg plant flavonoid 3',5'-hydroxylase cDNA. Northern blot analysis showed the normal expression of F3', 5'H gene from transgenic plants. Here we found the phenotypic differences between transgenic plants and wild-type plants. The petal shape of transgenic plants showed more round shape and around petal tube area was compared to that of wild-type tobacco plants. And the petal color of transgenic plants was much lighter than that of wild-type tobacco plants.

  • PDF

남한지역 한약자원식물의 수집분류와 이용체계에 관한 연구 1. 남한지역 한약자원 식물의 수집분류 (A Study on Development of Medical Wild Plant Resources in the Southern Area of Korea 1. Investigation of the Herb Plant Resources around Mountain of south Korea)

  • 이종일
    • 한국자원식물학회지
    • /
    • 제5권2호
    • /
    • pp.113-127
    • /
    • 1992
  • The plants medicinal resources of southern area(Soraksan, Bughansan, Odesan, Gwanagsan, Sollaegsan, Gyeryongsan, Sogrisan, Deogyusan, Chinsan, Jogyesan, Mudeungsan, Hallasan) ofkorea were investigated 10 times from May 1,1992 to November 30,1992In order to analyze the vegetation of southem area, medical wild plants structure and distr:~bution.Medical wild plants of southern area consisted of 94 familis,284 specis in all. The resources of impor-tant herb drugs were Polypodiaceae, Graminea, Liliaceae, polygonaceae, Ranunculaceae,Brassicaceae, Rosaceae, Favaceae, Apiaceae, Ldbiatae, Solanaceae, Companulaceae, Compositae.The herb drygs were comparatively more thanin other mounteins in our country.

  • PDF

The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

  • Kim, Ji Soo;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.215-219
    • /
    • 2014
  • The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

Evaluation of Nitrogen Fixation between Supernodulating Soybean Mutants and their Wild-Types Using $^{15}N$ in Field Conditions

  • Youn, Jong-Tag;Van, Kyu-Jung;Ryu, Yong-Hwan;Shimada, Shinji;Lee, Choon-Ki;Kim, Sun-Lim;Seo, Sea-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.31-38
    • /
    • 2008
  • Improvement of $N_2$ fixation by symbiotic rhizobia is considered an effective means for enhancing its productivity without high input of nitrogen(N) fertilizer. Several methods to improve $N_2$ fixation have been proposed including the use of supernodulating mutants. The objective of this research was to identify the varietal difference in N and $N_2$-fixation ability among the soybean supernodulating mutants, SS2-2 and Sakukei 4, with different nodulation abilities using $^{15}N$ in field conditions in both Korea and Japan. The dry weight(DW) was higher in wild-type soybeans. The distribution rate of DW in each plant part was high in seeds of supernoduating and wild-type soybeans but high in stems and leaves of non-nodulating mutants. Although the supernodulating mutants had a low DW rate at maturity, they showed a similar $N_2$ fixation ability compared with wild-type. Supernodulating mutant plants mainly obtained N from $N_2$ fixation, while soil N was the main resource for obtaining N in non-nodulating mutants. The percentage of N derived from atmospheric dinitrogen(Ndfa) was higher in supernodulating mutants than in wild-type and relatively high in seeds between plant parts at maturity. In particular, supernodulating mutants showed higher N content in roots than those of wild-type and non-nodulating mutants. It was considered that supernodulating mutants have the advantage of saving nitrate in soil and being beneficial for N absorption of subsequent crops due to their conserving more N in the field and releasing considerable amounts of N from roots and leaves fallen to the soil.

  • PDF

Contribution of the murI Gene Encoding Glutamate Racemase in the Motility and Virulence of Ralstonia solanacearum

  • Choi, Kihyuck;Son, Geun Ju;Ahmad, Shabir;Lee, Seung Yeup;Lee, Hyoung Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.355-363
    • /
    • 2020
  • Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

Symbiotic Effectiveness of Bradyrhizobium japonicum USDA 110 in Supernodulating Soybean Mutant SS2-2

  • Lestari Puji;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • 한국작물학회지
    • /
    • 제50권2호
    • /
    • pp.125-130
    • /
    • 2005
  • In the absence of exogeneous nitrogen supply, evaluation of a symbiosis effectiveness of Bradyrhizobium japonicum USDA 110 in a supernodulating soybean mutant, SS2-2, its wild type, Sinpaldalkong 2, and control genotype, Jangyeobkong, was conducted in this study. Nodules in SS2-2 were initially white and similar to its wild type, Sinpaldalkong 2. At the late stage, the wild type nodules became dark pinkish by maturation, by contrast, mature nodules in SS2-2 remained light green to pinkish, indicating a lack of leghemoglobin. Tap root length was short in nodulated symbiotic SS2-2 than that of its wild type and the control genotype. Nodulated root length and nodule density on root length were significantly increased by B. japonicum inoculation, but no significant increase was observed on root length and percentage of nodulation to total root length. Regardless of Bradyrhizobium inoculation, SS2-2 showed higher nodule dry weight and higher acetylene reduction activity (ARA) when compared with its wild type and the control genotype. Inoculation of B. japonicum leaded the increase of ARA in 47 days after planting (DAP), in part because of nodule development. Supernodulating mutant, SS2-2, less responded to B. japonicum induction in terms of nitrogen fixation and nodulation characteristics than its wild type. Thus, interaction of supernodulating soybean mutant with Bradyrhizobium had less symbiotically associated response than normal nodulating soybean.

Detection of viral infections in wild Korean raccoon dogs (Nyctereutes procyonoides koreensis)

  • Yang, Dong-Kun;Lee, Seoug Heon;Kim, Ha-Hyun;Kim, Jong-Taek;Ahn, Sangin;Cho, In-Soo
    • 대한수의학회지
    • /
    • 제57권4호
    • /
    • pp.209-214
    • /
    • 2017
  • Wild raccoon dogs (Nyctereutes procyonoides koreensis) may play a role transmitting several pathogens to humans and pet animals. Information concerning the incidence of rabies, canine distemper virus (CDV), canine parvovirus (CPV), canine adenovirus type 2 (CAdV-2), canine parainfluenza virus type 5 (CPIV-5), and canine herpesvirus (CHV) is needed in wild raccoon dogs. In total, 62 brain samples of raccoon dogs were examined for rabies virus (RABV) and CDV, and 49 lung samples were screened for CDV, CAdV-2, CPIV-5, and CHV. No RABV, CAdV-2, CPIV-5, or CHV was identified, but nine CDV antigens (8.1%, 9/111) were detected. Moreover, 174 serum samples from wild raccoon dogs were screened for antibodies against the five major viral pathogens. The overall sero-surveillance against CDV, CPV, CAdV-2, CPIV-5, and CHV in wild raccoon dogs was 60.3%, 52.9%, 59.8%, 23.6%, and 10.3%, respectively. Comparisons of the sero-surveillance of the five pathogens showed that raccoon dogs of Gyeonggi province have slightly higher sero-positive rates against CDV, CPV, and CHV than those of Gangwon province. These results indicate high incidences of CDV, CPV, and CAdV-2 in wild raccoon dogs of two Korean provinces and a latent risk of pathogen transmission to companion and domestic animals.

Ecophysiological Changes in a Cold Tolerant Transgenic Tobacco Plant Containing a Zinc Finger Protein (PIF1) Gene

  • Yun, Sung-Chul;Kwon, Hawk-Bin
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.389-394
    • /
    • 2008
  • The ecophysiological changes occurring upon cold stress were studied using cold tolerant transgenic and wild-type tobacco plants. In a previous study, cold tolerance in tobacco was induced by the introduction of a gene encoding the zinc finger transcription factor, PIF1. Gas-exchange measurements including net photosynthesis and stomatal conductance were performed prior to, in the middle of, and after a cold-stress treatment of $1{\pm}2^{\circ}C$ for 96 h in each of the four seasons. In both transgenic and wild-type plants, gas-exchange parameters were severely decreased in the middle of the cold treatment, but had recovered after 2-3 h of adaptation in a greenhouse. Most t-test comparisons on gas-exchange measurements between the two plant types did not show statistical significance. Wild-type plants had slightly more water-soaked damage on the leaves than the transgenic plants. A light-response curve did not show any differences between the two plant types. However, the curve for assimilation-internal $CO_2$ in wild-type plants showed a much higher slope than that of the PIF1 transgenic plants. This means that the wild-type plant is more capable of regenerating Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and has greater electron transport capacity. In conclusion, cold-resistant transgenic tobacco plants demonstrated a better recovery of net photosynthesis and stomatal conductance after cold-stress treatment compared to wild-type plants, but the ecophysiological recoveries of the transgenic plants were not statistically significant.