• 제목/요약/키워드: wild american ginseng

검색결과 8건 처리시간 0.066초

General Introduction of American Ginseng Indigenous in USA and Canada

  • Park, Chung-Heon;Bang, Kyung-Hwan;Park, Chun-Geun;Sung, Jung-Sook;Song, Won-Seob
    • Plant Resources
    • /
    • 제6권3호
    • /
    • pp.165-169
    • /
    • 2003
  • American ginseng (Panax quinquefolium) is herbaceous perennial plants indigenous to North American forests. This is highly valued as medicinal herbs with a long history of collection from wild populations since 1716. Wild American ginseng distributed from Quebec in Canada to northern Florida in USA. A heavy concentration is found in the Appalachian mountains, although wild American ginseng is considered endangered. The price paid for field cultivated ginseng has dropped dramatically in the past 10 years, while the price for wild or woods cultivated ginseng has rised significantly. The price curve for ginseng resembles a roller coaster, reflecting not only supply and demand but many other factors. This information will be useful to understand American ginseng compared to Korean ginseng.

  • PDF

미국 화기삼의 종류별 생산방법과 경제성분석 (Production Procedures and Economics of the American Ginseng)

  • 이동필
    • Journal of Ginseng Research
    • /
    • 제30권3호
    • /
    • pp.172-180
    • /
    • 2006
  • The purpose of this study is classifying types of American ginseng and estimating their production cost and revenue by the types. Usually, the American ginseng can be classified as 4 different types; wild ginseng(WG), wild simulated ginseng(WSG), woods grown ginseng(WGG), and field cultivated ginseng(FCG). This paper estimates costs and benefits for FCG, WGG, and WSG per acre. The WGG & WSG are produced under the tree at mountain while the FCG is produced at large scale farm with machinery. Annual profit for the FCG is $2,222 while that of the WGG and the WSG are $2,759 and $3,799 per acre. Although quantity produced per acre for the WGG and WSG(600lbs and 160lbs) are much smaller than that of the FCG(3,000lbs), prices per pound for the WGG and WSG($125, 375$) are higher than that of the FCG($24). In addition, production costs for the WGG and WSG are lower than that of the FCG because of the costs for seeds, shadow facility, and chemicals are different by the types of production.

Genetic Diversity of Wild and Cultivated Populations of American Ginseng (Panax Quinquefolium) from Eastern North America Analyzed by RAPD Markers

  • Lim, Wan-Sang
    • 한국약용작물학회지
    • /
    • 제13권5호
    • /
    • pp.262-269
    • /
    • 2005
  • The objective of this study was to assess genetic diversity among 6 different wild ginseng populations from New York, Kentucky, North Carolina, Pennsylvania, Tennessee and Virginia, and to compare these wild populations to one cultivated population. RAPD markers were used to estimate the genetic difference among samples from the 7 populations. The 64 random primers were screened, and 15 primers were selected which exhibited the 124 highly reproducible polymorphic markers. The ratio of discordant bands to total bands scored was used to estimate the genetic distance within and among populations. Multidimensional scaling (MDS) of the relation matrix showed distinctive separation between wild and cultivated populations. The MDS result was confirmed using pooled chi-square tests for fragment homogeneity. This study suggests that RAPD markers can be used as population-specific markers for American ginseng.

Differentiation and authentication of Panax ginseng (Korea and China), Panax quinquefolius, and development of genetic marker by AFLP analysis.

  • Jeong, Jae-Hun;Jung, Su-Jin;Yun, Doh-Won;Yoon, Eui-Soo;Choi, Yong-Eui
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.157.2-157.2
    • /
    • 2003
  • Panax ginseng is one of the most important medicinal plant in the Orient. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in Korea and an abroad. Obviously, an effective method of authentication of Korean ginseng from others at a DNA level, is necessary for the healthy development of the ginseng market. In order to develop convenient and reproducible methods for the identification of Korean ginseng, amplified fragment length polymorphism (AFLP) analysis was applied within Panax species (Korean cultivatied and wild ginseng, Chinese wild ginseng, American cultivatied and wild ginseng). (omitted)

  • PDF

Authentication of Korean Panax ginseng from Chinease Panax ginseng and Panax quinquefolius by AFLP analysis

  • Kim Bo-Bae;Jeong Jae-Hun;Jung Su-Jin;Yun Doh-Won;Yoon Eui-Soo;Choi Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • 제7권2호
    • /
    • pp.81-86
    • /
    • 2005
  • Panax ginseng is one of the most important medicinal plants in the world. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in abroad and Korea. An effective method to authenticate the Korean Panax ginseng from others at a DNA level is necessary for the healthy development of the ginseng market. Amplified fragment length polymorphism (AFLP) analysis was applied to develop a method for the identification of Korean ginseng between Chinese ginseng and American ginseng. It is very difficult to detect the different polymorphic bands among Korean field cultivated ginseng, and between field and wild-cultivated ginseng. The genetic distance coefficient by AFLP analysis between field- and wild cultivated Korean ginseng was very low, 0.056. Whereas, polymorphic bands between Korean and Chinese wild-cultivated ginseng was significantly different. The genetic distance coefficient between wild-cultivated Korean and Chinese ginseng was 0.149. The genetic distance coefficients between the P. ginseng and P. quinquefolius were ranging from 0.626 to 0.666. These results support that the AFLP analysis could be applied to authenticate Korean P. ginseng from others Chinese P. ginseng and American ginseng (P. quinquefolius).

Effects of Interactions Among Age, Cultivation Method (Location) and Population on Ginsenoside Content of Wild Panax Quinquefolium L. One Year after Transplanting from Wild

  • Lim, Wan-Sang
    • 한국약용작물학회지
    • /
    • 제13권5호
    • /
    • pp.254-261
    • /
    • 2005
  • To evaluate the effects of cultivar, environment, age and cultivation times on ginsenoside content among 8 wild populations of American ginseng (Panax quinquefolium), the concentrations of 6 ginsenosides in root were determined at the time of collection (T0) of plants from the wild and 1 year after (T1) transplanting the roots to each of two different forest garden locations. Both location and population had significant effects on root and shoot growth. Overall, ginsenoside Rb1 was most abundant. The second most abundant ginsenoside were Re and Rg1, however the contents of them were not significantly different from each other. Concentrations of Rg1 and Re were inversely related. Ginsenoside Re was influenced by population and location. Ginsenoside Rg1, Rb1, Rc, Rb2 and Rd were influenced by population, location and age. Ginsenoside levels were consistently lower but growth was consistently higher at the more intensively managed garden location.

$GA_3$ 및 ABA 사용이 매장처리 중 미국삼 종자의 후숙에 미치는 영향 (Effects of $GA_3$ and ABA Application on After-ripening of Panax quinquefolium Seeds during Stratification)

  • Guixing Ren;Feng Chen;Haozhe Lian;Jinghui Zhao;Xianzong Gao;Chongming Guo
    • Journal of Ginseng Research
    • /
    • 제20권1호
    • /
    • pp.83-87
    • /
    • 1996
  • The effects of gibberilin ($GA_3$) on levels of endogenous indole-3-acetic acid (IAA) and zeatin in both fresh and stratified American ginseng (Panax quinquefolium) seeds were investigated. In our first experiment, the fresh seeds were stratified after soaked in 80 ppd $GA_3$ solution for 24 hours. We found that the IAA concentration in embryo increased by 50.7% and 82.1% respectively at the 120th day and the 188th day of stratification, and the zeatin concentration also increased by 3.8% and 51.6% respectively. In our second experiment, we treated the seeds after 134 days stratification with 80 ppm GA3 for 24 hours and then continued to stratify them. We found that the IAA concentration in embryo increased by 32.9% and 17.7% respectively at the 164th day and the 208th day of stratification while zeatin concentration increased by 22.7% and 30.6% respectively In our another experiment, we studied the effects of $GA_3$, abscislc acid (ABA) and GA, plus ABA on germination rate of seeds treated with these plant hormones during stratification. We found that when the stratified seeds whose ratio of embryo had reached 75% were treated with 80 ppm GA3 for 24 hours and then were allowed to be stratified for another 88 days, the weight and length of embryo (p < 0.05), and germination rate (p < 0.01) increased. In contrast, the 25 ppm ABA treated with for 24 hours was found to Inhibit the growth of embryo (p < 0.05) and reduce the germination rate (p < 0.05) . The experiment of combination treatment of $GA_3$ and ABA showed that $GA_3$ could relieve the inhibitory effects of the ABA on the development of the seeds.

  • PDF

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1978년도 학술대회지
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF