• Title/Summary/Keyword: wide field of view

Search Result 268, Processing Time 0.031 seconds

PANORAMIC MID-INFRARED VIEWS OF DISTANT CLUSTERS OF GALAXIES WITH AKARI

  • Koyama, Yusei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.287-291
    • /
    • 2017
  • We present the results of our mid-infrared (MIR) observations of distant clusters of galaxies with AKARI. The wide-field of view of IRC/AKARI ($10^{\prime}{\times}10^{\prime}$) is ideally suited for studying dust-obscured star-formation (SF) activity of galaxies along the cosmic web in the distant universe. We performed a deep and wide-field $15{\mu}m$ (rest-frame ${\approx}8{\mu}m$) imaging observation of the RXJ1716+6708 cluster (z = 0.81) with IRC. We find that $15{\mu}m$-detected cluster member galaxies (with total infrared luminosities of $L_{IR}{\geq}10^{11}L_{\odot}$) are most preferentially located in the cluster outskirt regions, whilst such IR-luminous galaxies avoid the cluster centre. Our $H{\alpha}$ follow-up study of this field confirmed that a significant fraction of $15{\mu}m$-detected cluster galaxies are heavily obscured by dust (with $AH{\alpha}$>3 mag in extreme cases). The environment of such dusty star-burst galaxies coincides with the place where we see a sharp "break" of the colour-density relation, suggesting an important link between dust-obscured SF activity and environmental quenching. We also report the discovery of a new cluster candidate around a radio galaxy at z = 1.52 (4C 65.22), where we obtained one of the deepest IRC imaging datasets with all the nine filters at $2-24{\mu}m$. This field will provide us with the final, excellent laboratory for studying the dust-enshrouded SF activity in galaxies along the cosmic web at the critical epoch of cluster galaxy evolution with AKARI.

The Research for the Wide-Angle Lens Distortion Correction by Photogrammetry Techniques (사진측량 기법을 사용한 광각렌즈 왜곡보정에 관한 연구)

  • Kang, Jin-A;Park, Jae-Min;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • General lens, widely using in Photogrammetry, has narrow view, and have to adjust "Image-Registration Method" after obtain images and it need cost; economic, period of time. Recent days, there is various study that use wide-angle lens, usually for robotics field, put to practical use in photogrammetry instead of general lens. In this studies, distortion tendency of wide-angle lens and utilize the correction techniques suitable to wide-angle lens by the existing photographic survey methods. After carrying out the calibration of the wide-angle lens, we calculated the correction parameters, and then developed the method that convert the original image-point to new image-point correcting distortion. For authorization the developed algorithm, we had inspection about shape and position; there are approximately 2D RMSE of 3 pixel, cx = 2, and cy = 3 different.

Electro-Optic Characteristics of the Fringe-Field driven Reflective Hybrid Aligned Nematic Liquid Crystal Display (Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정 디스플레이의 전기-광학 특성)

  • Jung, T.B.;Park, C.H.;Son, J.S.;Rhee, J.M.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.972-975
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic characteristics of reflective hybrid aligned nematic liquid crystal displays driven by fringe field. The results show that the optimal retardation value of the cell is $0.289{\mu}m$, which allows for the cell to have a practical cell gap of larger than $3{\mu}m$ when manufacturing. A reflectance of the dark state is only 0.114% for an incident light 550nm. At this condition, the light efficiency of white state reaches 92.7%. Further, we have studied a new reflective display with polarizer, optical compensation with half plate, LC plus reflector. The display with optimized cell parameters shows low wavelength dispersion and the contrast ratio greater than 5 over exists about $120^{\circ}$ in vertical direction and $160^{\circ}$ in horizontal direction.

  • PDF

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

A Coaxial and Off-axial Integrated Three-mirror Optical System with High Resolution and Large Field of View

  • Chen, Zhe;Zhu, Junqing;Peng, Jiantao;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • A novel optical design for high resolution, large field of view (FOV) and multispectral remote sensing is presented. An f/7.3 Korsch and two f/17.9 Cook three-mirror optical systems are integrated by sharing the primary and secondary mirrors, bias of the FOV, decentering of the apertures and reasonable structure arrangement. The aperture stop of the Korsch system is located on the primary mirror, while those of the Cook systems are on the exit pupils. High resolution image with spectral coverage from visible to near-infrared (NIR) can be acquired through the Korsch system with a focal length of 14 m, while wide-field imaging is accomplished by the two Cook systems whose focal lengths are both 13.24 m. The full FOV is 4°×0.13°, a coverage width of 34.9 km at the altitude of 500 km can then be acquired by push-broom imaging. To facilitate controlling the stray light, the intermediate images and the real exit pupils are spatially available. After optimization, a near diffraction-limited performance and a compact optical package are achieved. The sharing of the on-axis primary and secondary mirrors reduces the cost of fabrication, test, and manufacture effectively. Besides, the two tertiary mirrors of the Cook systems possess the same parameters, further cutting down the cost.

Generation of Forensic Evidence Data from Script (무선 WiGig 전송 연구)

  • Choi, Sang-hyeon;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.356-359
    • /
    • 2017
  • According to the plan of operation of the Ministry of Education, IWB (Interactive White Board) was distributed to one or two classrooms per school. Therefore, instead of the overhead projector (OHP) and the screen, the visual presenter and the IWB replaced the role. However, the development speed of the imaging device and the display device could not keep up, and the utilization was often lowered. In this study, we study to obtain a high resolution image using the camera of smartphone. It uses WiGig(Wireless Gigabit) technology to transmit the acquired high-resolution images to IWB or large-screen TV without delay in wireless communication. In addition, while the smartphone camera is equipped with a lens of a wide field of view(FOV), the microscope lens can be used to magnify and magnify a specific portion of a smartphone 400 times. As s result of this study it will be used as active material for real-time 400 times magnification in education and research field.

  • PDF

Do neonicotinoid insecticides impaired olfactory learning behavior in Apis mellifera?

  • Imran, Muhammad;Sheikh, Umer Ayyaz Aslam;Nasir, Muhammad;Ghaffar, Muhammad Abdul;Tamkeen, Ansa;Iqbal, Muhammad Aamir
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.38 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Bee's population is declining and disappearing at alarming rate. There are many factors responsible for declining the population of bees including diseases, natural enemies, environmental conditions and pesticides. Insecticides play its role dramatically for their population decline and neonicotinoid insecticides are critically important due to their wide application for pest control. Keeping in view of above problem, effect of neonicotinoid insecticides on olfactory learning behavior in Apis mellifera was observed using Proboscis Extension Reflex (PER) method. In this method, bees were harnessed in centrifuges tubes and feed on insecticides mixed sugar solution after three hours hunger. Bees were checked by feeding on non-treated sugar solution to observe PER response. Minimum proboscis extension was observed for acetamiprid and imidacloprid with 26% and 20% respectively at their recommend field doses while it was maximum for dinotefuran and thiamethoxam with 73% and 60% respectively. Only 40% bees showed response when exposed at 1/10 concentration of field dose for imidacloprid and the least at 1/100 of field dose. At control (Sugar solution) about 90% bees showed PER response. Among these neonicotinoid insecticides tested, imidacloprid and acetamiprid were the most damaging which impaired the olfactory learning performance in Apis mellifera.

Standard Calibration for Broadband and Narrowband Filters of KHAO 0.4 m Telescope

  • Ahn, Hojae;Jeong, Inhwan;Paek, Gregory S.H.;Lee, Sumin;Kim, Changgon;Pak, Soojong;Shim, Hyunjin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.1-76.1
    • /
    • 2021
  • Maemi Dual Field Telescope System (MDFTS) is a dual telescope system located at Kyung Hee University. The system consists of 0.4 m telescope and 0.1 m telescope for wide-field observation. The 0.4 m telescope provides photometric observation which covers a field of view of 21'×16'. It has been used for various purposes with Johnson-Cousins UBVRI broadband filter system, e.g., SomangNet and Intensive Monitoring Survey of Nearby Galaxies. In this poster, we present the standard calibration result for our broadband filter system. Also, we suggest a new usage of the KHAO 0.4m telescope which is narrowband photometry by demonstrating the standard calibration of H-alpha filter. For flux calibration, not only R filter but also V filter is used for compensating the central wavelength discrepancy between R filter and H-alpha filter.

  • PDF

SMBH Mass Estimate Discrepancy and Its Origin of NGC 6861

  • Jang, Minsung;Owers, Matt
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2012
  • NGC 6861 is the brightest S0 galaxy in the Telescopium group. It has unusually high central stellar velocity dispersion (~400 km/s) and clear rotation (~250 km/s). Considering the well-known M-sigma relation, this large central dispersion implies that the central supermassive black hole (SMBH) has mass comparable to the most massive black holes in the Universe. However, the mass implied by the bulge luminosity-SMBH mass relation is an order of magnitude lower than that predicted by the M-sigma relation. In order to determine the origin of this inconsistency, we obtain integral field spectroscopy using the Wide Field Spectrograph (WiFeS) on the ANU 2.3m telescope. The data are used to map the velocity and velocity dispersion fields which show that our measurements are consistent with those from the other literature. The large field of view the WiFeS observations have allows us to map the kinematics of a much greater portion of NGC 6861 and reveals that the eastern part of the galaxy has higher velocity and dispersion than the rest of halo. We discuss the origin of the unusual fast rotation and the discrepancy of two SMBH mass estimations from three plausible perspectives: 1) the interaction between subgroups of NGC 6861 and its counterpart, NGC 6868; 2) the inhibited growth of the stellar bulge by the AGN activity which leads to an underestimate the SMBH mass when using the bulge luminosity-SMBH mass relation; and 3) gas rich minor mergers that could be crucial for increasing both rotation velocity and velocity dispersion during the evolution of NGC 6861.

  • PDF

Large-area High-speed Single Photodetector Based on the Static Unitary Detector Technique for High-performance Wide-field-of-view 3D Scanning LiDAR (고성능 광각 3차원 스캐닝 라이다를 위한 스터드 기술 기반의 대면적 고속 단일 광 검출기)

  • Munhyun Han;Bongki Mheen
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.139-150
    • /
    • 2023
  • Despite various light detection and ranging (LiDAR) architectures, it is very difficult to achieve long-range detection and high resolution in both vertical and horizontal directions with a wide field of view (FOV). The scanning architecture is advantageous for high-performance LiDAR that can attain long-range detection and high resolution for vertical and horizontal directions. However, a large-area photodetector (PD), which is disadvantageous for detection speed, is essentially required to secure the wide FOV. Thus we propose a PD based on the static unitary detector (STUD) technique that can operate multiple small-area PDs as a single large-area PD at a high speed. The InP/InGaAs STUD PIN-PD proposed in this paper is fabricated in various types, ranging from 1,256 ㎛×949 ㎛ using 32 small-area PDs of 1,256 ㎛×19 ㎛. In addition, we measure and analyze the noise and signal characteristics of the LiDAR receiving board, as well as the performance and sensitivity of various types of STUD PDs. Finally, the LiDAR receiving board utilizing the STUD PD is applied to a 3D scanning LiDAR prototype that uses a 1.5-㎛ master oscillator power amplifier laser. This LiDAR precisely detects long-range objects over 50 m away, and acquires high-resolution 3D images of 320 pixels×240 pixels with a diagonal FOV of 32.6 degrees simultaneously.