• Title/Summary/Keyword: wick

Search Result 168, Processing Time 0.019 seconds

Perception of upper lip augmentation utilizing simulated photography

  • Linkov, Gary;Wick, Elizabeth;Kallogjeri, Dorina;Chen, Collin L.;Branham, Gregory H.
    • Archives of Plastic Surgery
    • /
    • v.46 no.3
    • /
    • pp.248-254
    • /
    • 2019
  • Background No head to head comparison is available between surgical lip lifting and upper lip filler injections to decide which technique yields the best results in patients. Despite the growing popularity of upper lip augmentation, its effect on societal perceptions of attractiveness, successfulness and overall health in woman is unknown. Methods Blinded casual observers viewed three versions of independent images of 15 unique patient lower faces for a total of 45 images. Observers rated the attractiveness, perceived success, and perceived overall health for each patient image. Facial perception questions were answered on a visual analog scale from 0 to 100, where higher scores corresponded to more positive responses. Results Two hundred and seventeen random observers with an average age of 47 years (standard deviation, 15.9) rated the images. The majority of observers were females (n=183, 84%) of white race (n=174, 80%) and had at least some college education (n=202, 93%). The marginal mean score for perceived attractiveness from the natural condition was 1.5 points (95% confidence interval [CI], 0.9-2.18) higher than perceived attractiveness from the simulated upper lip filler injection condition, and 2.6 points higher (95% CI, 1.95-3.24) than the simulated upper lip lift condition. There was a moderate to strong correlation between the scores of the same observer. Conclusions Simulated upper lip augmentation is amenable to social perception analysis. Scores of the same observer for attractiveness, successfulness, and overall health are strongly correlated. Overall, the natural condition had the highest scores in all categories, followed by simulated upper lip filler, and lastly simulated upper lip lift.

BOTANI: High-fidelity multiphysics model for boron chemistry in CRUD deposits

  • Seo, Seungjin;Park, Byunggi;Kim, Sung Joong;Shin, Ho Cheol;Lee, Seo Jeong;Lee, Minho;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1676-1685
    • /
    • 2021
  • We develop a new high-fidelity multiphysics model to simulate boron chemistry in the porous Chalk River Unidentified Deposit (CRUD) deposits. Heat transfer, capillary flow, solute transport, and chemical reactions are fully coupled. The evaporation of coolant in the deposits is included in governing equations modified by the volume-averaged assumption of wick boiling. The axial offset anomaly (AOA) of the Seabrook nuclear power plant is simulated. The new model reasonably predicts the distributions of temperature, pressure, velocity, volumetric boiling heat density, and chemical concentrations. In the thicker CRUD regions, 60% of the total heat is removed by evaporative heat transfer, causing boron species accumulation. The new model successfully shows the quantitative effect of coolant evaporation on the local distributions of boron. The total amount of boron in the CRUD layer increases by a factor of 1.21 when an evaporation-driven increase of soluble and precipitated boron concentrations is reflected. In addition, the concentrations of B(OH)3 and LiBO2 are estimated according to various conditions such as different CRUD thickness and porosity. At the end of the cycle in the AOA case, the total mass of boron incorporated in CRUD deposits of a reference single fuel rod is estimated to be about 0.5 mg.

Combustion of a Female Body Due to an External Ignition Source (외부 점화원에 의한 여성 신체의 연소)

  • Cho, Young Jin;Ji, Hong Keun;Kim, Sun Jae;Lim, Kyu Young;Lee, Dong Kyu;Choi, Gyeong Won;Park, Jong Taek;Moon, Byung Sun;Goh, Jae Mo;Park, Nam Kyu
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.94-96
    • /
    • 2020
  • In November 2013, a case of sustained combustion of a female body was encountered in a Korean farming village. The body was almost completely incinerated from the neck to the knees, and other parts of the body, such as the head, arms, lower legs, and feet, were slightly damaged. The most likely external ignition source was the flame from a matchstick. The elderly woman was found incinerated on the floor of the living room, while other objects in the house were largely undamaged except for having a brown oily or greasy coating. Flammable substances were not detected from the woman's intact pieces of clothing and socks, and her muscular tissues did not contain toxic chemicals. The concentration of carboxyhemoglobin in her peripheral blood was 11% and that of ethyl alcohol in her aqueous humor was below 0.010%. An autopsy failed to determine the exact cause of death because of excessive charring.

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC (AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석)

  • Chung, Won-Sik;Chi, Ri-Guang;Lee, Wook-Hyun;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.54-62
    • /
    • 2016
  • The most efficient system for converting heat to electricity, AMTEC (Alkali Metal Thermal-to-Electric Convertor), is a device that directly converts heat energy to electricity using an alkali metal (sodium) as the working fluid. The AMTEC consists of a low pressure chamber, high pressure chamber, BASE (Beta-Alumina Solid Electrolyte), and artery wick. The main heat loss of the AMTEC system occurs in the low pressure chamber. A high power generation rate is thought to be obtainable by using a high temperature in the BASE. Therefore, to reduce the radiation heat loss, 6 types of radiation shields were examined to reduce the radiative heat loss in the low pressure chamber. The power generation rate of the AMTEC varied depending on the shape of the radiation shield. CFD (Computational Fluid Dynamics) analyses were carried out to optimize the shape of the radiation shield. As a result, the optimum radiation shield was found to consist of a curvature formed at the vertical point, in which case the dimensionless temperature (condenser temperature/BASE temperature) is approximately 0.665 and the maximum power generated is calculated to be 17.69W. Increasing the distance beween the BASE and condenser leads to an increase in the power generated, and the power generated with the longest distance was 17.58 W. The shields with multiple holes and multiple horizontal layers showed power reduction rates of 0.91 W and 2.06 W, respectively.

The effect of Temperature Reduction of Green Roof using Rainwater Storage Tank (빗물 저류 시스템을 활용한 옥상 녹화의 온도 저감 효과)

  • Yun, Seok-Hwan;Kim, Eun-Sub;Piao, Zheng-Gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Kang, Han-Min;Ham, Eun-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.109-119
    • /
    • 2021
  • Thermal environment of city is getting worse due to severe urban heat island caused by climate change and urbanization. Green roof improves the urban thermal environment and save the cooling energy in buildings. This study presented a green roof combined with a storage system that stores rain-water and supplies water through a wick and evaluated the temperature reduction effect as surface temperature and amount of evapotranspiration. For about a week, the surface temperature using a infrared thermal imager and the evapotranspiration by recording change of module weight were measured at intervals of 30 minutes from sunrise to sunset. The results show that the mean surface temperature of the green roof was 15.4 degrees lower than that of the non-green roof from 12:00 P.M. to 14:00 P.M. There was no significant difference between mean surface temperature of green roof with and without storage system immediately after rain, but more than a week after rain, there was a difference with average of 2.49 degrees and maximum of 4.72 degrees. The difference in daily amount of evapotranspiration was measured to be 1.66 times on average. As drought stress increased over time, the difference in daily amount of evapotranspiration and surface temperature between with/without storage system increased simultaneously. The results of the study show a more excellent cooling effect of green roof combined with the rainwater storage system.

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao;Guo, Kailun;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3117-3129
    • /
    • 2022
  • Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Manufacturing Techniques of Bronze Medium Mortars(Jungwangu, 中碗口) in Joseon Dynasty (조선시대 중완구의 제작 기술)

  • Huh, Ilkwon;Kim, Haesol
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.161-182
    • /
    • 2021
  • A jungwangu, a type of medium-sized mortar, is a firearm with a barrel and a bowl-shaped projectileloading component. A bigyeokjincheonroe (bombshell) or a danseok (stone ball) could be used as a projectile. According to the Hwaposik eonhae (Korean Translation of the Method of Production and Use of Artillery, 1635) by Yi Seo, mortars were classified into four types according to its size: large, medium, small, or extra-small. A total of three mortars from the Joseon period have survived, including one large mortar (Treasure No. 857) and two medium versions (Treasure Nos. 858 and 859). In this study, the production method for medium mortars was investigated based on scientific analysis of the two extant medium mortars, respectively housed in the Jinju National Museum (Treasure No. 858) and the Korea Naval Academy Museum (Treasure No. 859). Since only two medium mortars remain in Korea, detailed specifications were compared between them based on precise 3D scanning information of the items, and the measurements were compared with the figures in relevant records from the period. According to the investigation, the two mortars showed only a minute difference in overall size but their weight differed by 5,507 grams. In particular, the location of the wick hole and the length of the handle were distinct. The extant medium mortars are highly similar to the specifications listed in the Hwaposik eonhae. The composition of the medium mortars was analyzed and compared with other bronze gunpowder weapons. The surface composition analysis showed that the medium mortars were made of a ternary alloy of Cu-Sn-Pb with average respective proportions of (wt%) 85.24, 10.16, and 2.98. The material composition of the medium mortars was very similar to the average composition of the small gun from the Joseon period analyzed in previous research. It also showed a similarity with that of bronze gun-metal from medieval Europe. The casting technique was investigated based on a casting defect on the surface and the CT image. Judging by the mold line on the side, it appears that they were made in a piece-mold wherein the mold was halved and using a vertical design with molten metal poured through the end of the chamber and the muzzle was at the bottom. Chaplets, an auxiliary device that fixed the mold and the core to the barrel wall, were identified, which may have been applied to maintain the uniformity of the barrel wall. While the two medium mortars (Treasure Nos. 858 and 859) are highly similar to each other in appearance, considering the difference in the arrangement of the chaplets between the two items it is likely that a different mold design was used for each item.