• 제목/요약/키워드: whole-genome DNA

검색결과 178건 처리시간 0.023초

Genome-based identification of strain KCOM 1265 isolated from subgingival plaque at the species level

  • Park, Soon-Nang;Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.70-75
    • /
    • 2020
  • The aim of this study was to identify strain KCOM 1265 isolated from subgingival plaque at the species level by comparing 16S ribosomal RNA gene (16S rDNA) and genome sequences. The whole genome of strain KCOM 1265 was extracted using the phenol-chloroform extraction method. 16S rDNA was amplified using polymerase chain reaction and sequenced using the dideoxy chain termination method. Pairwise genome comparison was performed using average nucleotide identity (ANI) and genome-to-genome distance (GGD) analyses. The data showed that the percent similarity of 16S rDNA sequence of strain KCOM 1265 was 99.6% as compared with those of Fusobacterium polymorphum ATCC 10953T and Fusobacterium hwasookii KCOM 1249T. The ANI values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 95.8% and 93.0%, respectively. The GGD values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 63.9% and 49.6%, respectively. These results indicate that strain KCOM 1265 belongs to F. polymorphum.

Annotation of Genes Having Candidate Somatic Mutations in Acute Myeloid Leukemia with Whole-Exome Sequencing Using Concept Lattice Analysis

  • Lee, Kye Hwa;Lim, Jae Hyeun;Kim, Ju Han
    • Genomics & Informatics
    • /
    • 제11권1호
    • /
    • pp.38-45
    • /
    • 2013
  • In cancer genome studies, the annotation of newly detected oncogene/tumor suppressor gene candidates is a challenging process. We propose using concept lattice analysis for the annotation and interpretation of genes having candidate somatic mutations in whole-exome sequencing in acute myeloid leukemia (AML). We selected 45 highly mutated genes with whole-exome sequencing in 10 normal matched samples of the AML-M2 subtype. To evaluate these genes, we performed concept lattice analysis and annotated these genes with existing knowledge databases.

Transposable Elements and Genome Size Variations in Plants

  • Lee, Sung-Il;Kim, Nam-Soo
    • Genomics & Informatics
    • /
    • 제12권3호
    • /
    • pp.87-97
    • /
    • 2014
  • Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms.

Complete genome sequence of Streptococcus hyointestinalis B19, a strain producing bacteriocin, isolated from chicken feces

  • Lee, Ju-Eun;Heo, Sunhak;Kim, Geun-Bae
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.420-422
    • /
    • 2020
  • Streptococcus hyointestinalis B19 was isolated from chicken feces collected from local farm in Anseong, Korea. S. hyointestinalis B19 was shown to produce bacteriocin-like compounds exhibiting inhibitory activities against several pathogens including strains of Clostridium perfringens and Listeria monocytogenes. The whole genome of S. hyointestinalis B19 strain was sequenced using PacBio RS II platform. The genome comprised four contigs with a size of 2,217,061 bp. The DNA G + C content was found to be 42.95 mol%. Annotation results revealed 2,266 coding sequences (CDSs), 18 rRNAs, and 61 tRNA genes. Based on genome analysis, we found that the strain B19 possessed various genes associated with bacteriocin synthesis, modification, and transport.

계층적 정렬쌍 가시화를 이용한 유전자 클러스터 탐색 알고리즘 (A Gene Clustering Method with Hierarchical Visualization of Alignment Pairs)

  • 진희정;박수현;조환규
    • 정보처리학회논문지A
    • /
    • 제16A권3호
    • /
    • pp.143-152
    • /
    • 2009
  • 최근 생물정보학 분야의 연구는 하나하나의 유전자를 연구하던 예전의 방법에서 유전자들간의 관계를 알아보는 연구들로 변해가고 있다. 이러한 유전자들 간의 연구 중 하나가 유전자 팀(gene team)을 연구하는 것이다. 유전자 팀이란 몇몇 염색체들 사이의 유전자들이 보존되어 있는 것을 말하며, 닫힌 영역 안에 보존되어 있는 유전자들의 집합으로 볼 수 있다. 이들은 진화과정을 거치면서, 유전자 팀 내의 유전자들의 위치나 그 종류가 변한다. 이러한 유전자 팀을 찾기 위해 많은 연구들이 이루어져왔다. 본 논문은 생물정보학 분야에서 많이 사용되는 계층적 클러스터링(hierarchical clustering)방법을 변형하여 전체 유전체(whole genome) 쌍내에서의 의미 있는 영역을 찾고, 영역 내에서 gene team을 찾을 수 있는 방법을 소개한다. 본 연구 방법을 이용하면, 복잡한 구조의 두 유전체 사이의 연관 유전자들이나 유사 영역들의 맵(map)을 단계별로 간략화 하여 나타낼 수 있다.

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Novel Mutations in Cholangiocarcinoma with Low Frequencies Revealed by Whole Mitochondrial Genome Sequencing

  • Muisuk, Kanha;Silsirivanit, Atit;Imtawil, Kanokwan;Bunthot, Suphawadee;Pukhem, Ake;Pairojkul, Chawalit;Wongkham, Sopit;Wongkham, Chaisiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1737-1742
    • /
    • 2015
  • Background: Mitochondrial DNA (mtDNA) mutations have been shown to be associated with cancer. This study explored whether mtDNA mutations enhance cholangiocarcinoma (CCA) development in individuals. Materials and Methods: The whole mitochondrial genome sequences of 25 CCA patient tissues were determined and compared to those of white blood cells from the corresponding individuals and 12 healthy controls. The mitochondrial genome was amplified using primers from Mitoseq and compared with the Cambridge Reference Sequence. Results: A total of 161 mutations were identified in CCA tissues and the corresponding white blood cells, indicating germline origins. Sixty-five (40%) were new. Nine mutations, representing those most frequently observed in CCA were tested on the larger cohort of 60 CCA patients and 55 controls. Similar occurrence frequencies were observed in both groups. Conclusions: While the correspondence between the cancer and mitochondrial genome mutation was low, it is of interest to explore the functions of the missense mutations in a larger cohort, given the possibility of targeting mitochondria for cancer markers and therapy in the future.

Development of A Monkey Kidney Cell Line Which Expresses Poliovirus Capsid Protein

  • Choi, Weon-Sang
    • 대한바이러스학회지
    • /
    • 제28권4호
    • /
    • pp.295-302
    • /
    • 1998
  • The RNA genome of poliovirus encodes a long polyprotein precursor and this polyprotein is cleaved proteolytically by viral protease to yield mature proteins. The mature proteins derived from the P1 polyprotein precursor are the component of capsids. To further delineate the process of capsid assembly and encapsidation, in a first attempt, a cell line which expresses the authentic P1 polyprotein was established. CV-1 cells were transfected with the pRCRSVS1P1 plasmid DNA which contains 5'ncr sequences, whole authentic capsid gene of poliovirus and neomycin resistance gene. These cells were treated with G418 for 3 months, and eventually G418 resistant cells were selected and formed colonies. Each colony was picked and grown in the media containing G418. DNA analysis indicated that 1 of 13 neomycin resistant cell lines (R2-18) contains whole poliovirus P1 capsid gene segment which was incorporated into the genome. Immuneprecipitation of cell lysates with sera from rabbit immunized with inactivateded Sabin type 1 particles demonstrated the constitutive expression of the poliovirus P1 capsid protein from R2-18.

  • PDF

무작위로 클로닝한 Porphyromonas endodontalis ATCC 35406 지놈 DNA의 제한절편 hybridization법에 의한 세균동정 (BACTERIAL IDENTIFICATION WITH RANDOM-CLONED RESTRICTION FRAGMENT OF Porphyromonas endodontalis ATCC 35406 GENOMIC DNA)

  • 엄원석;윤수한
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.645-654
    • /
    • 1995
  • Porphyromonas endodontalis is a black-pigmented anaerobic Gram negative rod which is associated with endodontal infections. It has been isolated from infected dental root canals and submucous abscesses of endodontal origin. DNA probe is an available alternative, offering the direct detection of a specific microorganism. Nucleic-acid probes can be off different types: whole different: whole-genomic, cloned or oligonucleotide probes. Wholegenomic probes are the most sensitive because the entire genome is used for possible hybridization sites. However, as genetically similar species of bacteria are likely to be present in specimences, cross-reactions need to be considered. Cloned probes are isolated sequences of DNA that do not show cross-reactivity and are produced in quantity by cloning in a plasmid vector. Cloned probes can approach the sensitivity found with whole-genomic probes while avoiding known cross-reacting species. Porphyromonas endodontalis ATCC 35406 (serotype $O_1K_1$) was selected in this experiment to develop specific cloned DNA probes. EcoR I-digested genomic DNA fragments of P. endodontalis ATCC 35406 were cloned into pUC18 plasmid vector. From the E. coli transformed with the recombinant plasmid 4 clones were selected to be tested as specific DNA probes. Restriction-digested whole-genomic DNAs prepared from P. gingivalis 38(serotype a), W50(serotype b), A7A1-28(serotype C), P. intermedia 9336(serotype b), G8-9K-3(serotype C), P. endodontalis ATCC 35406(serotype $O_1K_1$), A. a Y4(serotype b), 75(serotype a), 67(serotype c), were each seperated on agarose gel electrophoresis, blotted on nylon membranes, and were hybridized with digoxigenin-dUTP labeled probe. The results were as follows: 1. Three clones of 1.6kb(probe e), 1.6kb(probe f), and 0.9kb(probe h) in size, were obtained. These clones were identified to be a part of the genomic DNA of P. endodontalis ATCC 35406 judging from their specific hybridization to the genomic DNA fragments of their own size on Southern blot. 2. The clones of 4.9kb(probe i) was identified to be a part of the genomic DNA of P. endodontalis ATCC 35406. but not to specific for itself. It was hybridized to P. gingivalis A7A1-28, P. intermedia G89K-3.

  • PDF