• 제목/요약/키워드: whole genome sequencing

검색결과 244건 처리시간 0.029초

Complete genome sequence of Lactiplantibacillus plantarum ST, a potential probiotic strain with antibacterial properties

  • Yang, Shujuan;Deng, Chenglin;Li, Yao;Li, Weicheng;Wu, Qiong;Sun, Zhihong;Cao, Zhenhui;Lin, Qiuye
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.183-186
    • /
    • 2022
  • Lactiplantibacillus plantarum (L. plantarum) ST was isolated from De'ang pickled tea in Yunnan Province, China. The genomes of strain ST were fully sequenced and analyzed using the PacBio RS II sequencing system. Our previous study has shown that L. plantarum ST is a potential probiotic strain. It had strong tolerance in the simulated artificial gastrointestinal tract, and in the antagonism tests, this strain showed strong antibacterial activity. Therefore, as a probiotic, it may be used in animal breeding. L. plantarum ST genome was composed of 1 circular chromosome and 7 plasmids. The length of the whole genome was 3320817 bp, and the annular chromosome size was 3058984 bp, guanine + cytosine (G ± C) content (%) was 44.76%, which contained 2945 protein-coding sequences (CDS). This study will contribute to a further comprehensive understanding of L. Plantarum ST at the genomic level and provide a theoretical basis for its future application in animal breeding.

유전자 및 유전체 연구 기술과 동향 (Trend and Technology of Gene and Genome Research)

  • 이진성;김기환;서동상;강석우;황재삼
    • 한국잠사곤충학회지
    • /
    • 제42권2호
    • /
    • pp.126-141
    • /
    • 2000
  • A major step towards understanding of the genetic basis of an organism is the complete sequence determination of all genes in target genome. The nucleotide sequence encoded in the genome contains the information that specifies the amino acid sequence of every protein and functional RNA molecule. In principle, it will be possible to identify every protein resposible for the structure and function of the body of the target organism. The pattern of expression in different cell types will specify where and when each protein is used. The amino acid sequence of the proteins encoded by each gene will be derived from the conceptional translation of the nucleotide sequence. Comparison of these sequences with those of known proteins, whose sequences are sorted in database, will suggest an approximate function for many proteins. This mini review describes the development of new sequencing methods and the optimization of sequencing strategies for whole genome, various cDNA and genomic analysis.

  • PDF

A Simple Java Sequence Alignment Editing Tool for Resolving Complex Repeat Regions

  • Ham, Seong-Il;Lee, Kyung-Eun;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제7권1호
    • /
    • pp.46-48
    • /
    • 2009
  • Finishing is the most time-consuming step in sequencing, and many genome projects are left unfinished due to complex repeat regions. Here, we have developed BACContigEditor, a prototype shotgun sequence finishing tool. It is essentially an editor that visualizes assemblies of shotgun sequence fragment reads as gapped multiple alignments. The program offers some flexibility that is needed to rapidly resolve complex regions within a working session. The sole purpose of the release is to promote collaborative creation of extensible software for fragment assembly editors, foster collaborative development, and reduce barriers to initial tool development effort. We describe our software architecture and identify current challenges. The program is available under an Open Source license.

Genome analysis of Limosilactobacillus fermentum JN2019 applied to tumeric fermentation for animal feed

  • Yoo, Heeseop;Yong, Cheng Chung;Oh, Sejong
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1204-1206
    • /
    • 2021
  • Limosilactobacillus fermentum JN2019, formerly named Lactobacillus fermentum JN2019, was isolated from kimchi. Its genome was completely sequenced using the PacBio RSII sequencing system to explore beneficial phenotypes. In a previous study, L. fermentum JN2019 was used to ferment the by-product of tumeric for use in livestock feed. The 2.3 Mb genome had a high guanine (G) + cytosine (C) content of 50.6% and a 30 kb plasmid. The data will inform the comprehensive understanding of JN2019 and provide insights for potential applications.

Utilization of whole genome treasure for the library construction of industrial enzymes

  • Kim, Won-Ho;Cho, Kyoung-Won;Jung, In-Su;Choi, Keum-Hwa;Hur, Byung-Ki;Kim, Geun-Joong
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.815-820
    • /
    • 2003
  • A huge database resulted from whole genome sequencing has provided a possibility of new information that is likely to extent the scope and thus changes the way of approach for the functional assigning of putative open reading frames annotated by whole genome sequence analyses. These are mainly realized by ease, one-step identification of putative genes using genomics or proteomics tools. A major challenge remained in biotechnology may translate these informations into better ways to screen or select a gene as a representative sequence. Further attempts to mine the related whole genes or partial DNA fragment from whole genome treasure, and then the incorporation of these sequences into a representative template, will result in the use of putative genes that can be translated into functional proteins or allowed the generation of new lineages as a valuable pool. Such screens enable rapid biochemical analysis and easy isolation of the target activity, thereby accelerating the screening of novel enzymes from the expanded library with related sequences. Information-based PCR amplification of whole genes and reconstitution of functional DNA fragments will provide a platform for expanding the functional spaces of potential enzymes, especially when used mixed- or metagenome as gene resources.

  • PDF

Somatic Mutations from Whole Exome Sequencing Analysis of the Patients with Biliary Tract Cancer

  • Yoon, Kyong-Ah;Woo, Sang Myung;Kim, Yun-Hee;Kong, Sun-Young;Han, Sung-Sik;Park, Sang-Jae;Lee, Woo Jin
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.35.1-35.3
    • /
    • 2018
  • Biliary tract cancer (BTC) is a rare cancer and is associated with a poor prognosis. To understand the genetic characteristics of BTC, we analyzed whole-exome sequencing data and identified somatic mutations in patients with BTC. Tumors and matched blood or normal samples were obtained from seven patients with cholangiocarcinoma who underwent surgical resection. We discovered inactivating mutations of tumor suppressor genes, including APC, TP53, and ARID1A, in three patients. Activating mutations of KRAS and NRAS were also identified. Our analyses identified somatic mutations in Korean patients with BTC.

연체동물 유전체 연구현황 (Current Status of Genome Research in Phylum Mollusks)

  • 방인석;한연수;이준상;이용석
    • 한국패류학회지
    • /
    • 제26권4호
    • /
    • pp.317-326
    • /
    • 2010
  • The availability of fast and inexpensive sequencing technology has enabled researchers around the world to conduct many genome sequencing and expressed sequence tag (EST) projects of diverse organisms. In recent years, whole genome projects have been undertaken to sequence ten species from the phylum Mollusca. These include Aplysia californica, Lottia gigantea, Crassostrea virginica, Spisula solidissima, Mytilus californianus, Biomphalaria glabrata, Crepidula fornicata, Elysia chlorotica, Lottia scutum and Radix balthica. Additionally, complete mitochondrial genomes of 91 mollusks have been reported. In Korea, EST projects have been conducted in nine mollusk species that include Nesiohelix samarangae, Pisidium (Neopisidium) coreanum, Physa acuta, Incilaria fruhstorferi, Meretrix lusoria, Ruditapes philippinarum, Nordotis gigantea, Crassostrea gigas and Laternula elliptica. Finally, the mitochondrial genome projects from the Pacific Oyster (Crassostrea gigas) and the rock shell (Thais clavigera) have been conducted and reported. However, no systemic mollusk genome project has so far been conducted in Korea. In this report, the current status and research trends in mollusk genome study in Korea will be discussed.

Flanking Sequence and Copy-Number Analysis of Transformation Events by Integrating Next-Generation Sequencing Technology with Southern Blot Hybridization

  • Qin, Yang;Woo, Hee-Jong;Shin, Kong-Sik;Lim, Myung-Ho;Cho, Hyun-Suk;Lee, Seong-Kon
    • Plant Breeding and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.269-281
    • /
    • 2017
  • With the continual development of genetically modified (GM) crops, it has become necessary to develop detailed and effective molecular characterization methods to select candidate events from a large pool of transformation events. Relative to traditional molecular analysis methods such as the polymerase chain reaction (PCR) and Southern blot hybridization, next generation sequencing (NGS) technology for whole-genome sequencing of complex crop genomes had proven comparatively useful for in-depth molecular characterization. In this study, four transformation events, including one in Bacillus thuringiensis (Bt)-resistant rice, one in resveratrol-producing rice, and two in beta-carotene-enhanced soybeans, were selected for molecular characterization. To merge NGS analysis and Southern blot-hybridization results, we confirmed the transgene insertion sites, insertion construction, and insertion numbers of these four transformation events. In addition, the read-coverage depth assessed by NGS analysis for inserted genes might provide consistent results in terms of inserted T-DNA numbers in case of complex insertion structures and highly duplicated donor genomes; however, PCR-based methods can produce incorrect conclusions. Our combined method provides an effective and complete analytical approach for whole-genome visual inspection of transformation events that require biosafety assessment.

Next-generation sequencing for the genetic characterization of Maedi/Visna virus isolated from the northwest of China

  • Zhao, Ling;Zhang, Liang;Shi, Xiaona;Duan, Xujie;Li, Huiping;Liu, Shuying
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.66.1-66.9
    • /
    • 2021
  • Background: Maedi/Visna virus (MVV) is a contagious viral pathogen that causes considerable economic losses to the sheep industry worldwide. Objectives: In China, MVV has been detected in several regions, but its molecular characteristics and genetic variations were not thoroughly investigated. Methods: Therefore, in this study, we conducted next-generation sequencing on an MVV strain obtained from northwest China to reveal its genetic evolution via phylogenetic analysis. Results: A MVV strain obtained from Inner Mongolia (NM) of China was identified. Sequence analysis indicated that its whole-genome length is 9193 bp. Homology comparison of nucleotides between the NM strain and reference strains showed that the sequence homology of gag and env were 77.1%-86.8% and 67.7%-75.5%, respectively. Phylogenetic analysis revealed that the NM strain was closely related to the reference strains isolated from America, which belong to the A2 type. Notably, there were 5 amino acid insertions in variable region 4 and a highly variable motif at the C-terminal of the surface glycoprotein (SU5). Conclusions: The present study is the first to show the whole-genome sequence of an MVV obtained from China. The detailed analyses provide essential information for understanding the genetic characteristics of MVV, and the results enrich the MVV library.