Genomic Analysis Technologies: Whole Genome Sequencing (WGS) and Metagenomics

유전체 분석 기술: Whole Genome Sequencing (WGS)과 Metagenomics

  • Yewon Lee (Risk Analysis Research Center, Sookmyung Women's University) ;
  • Miseon Sung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yejin Park (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Eunryeong Yang (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yeji Park (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Jeonghyun Cho (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yohan Yoon (Risk Analysis Research Center, Sookmyung Women's University) ;
  • Hyemin Oh (Risk Analysis Research Center, Sookmyung Women's University)
  • 이예원 (숙명여자대학교 위해분석연구센터) ;
  • 성미선 (숙명여자대학교 식품영양학과) ;
  • 박예진 (숙명여자대학교 식품영양학과) ;
  • 양은령 (숙명여자대학교 식품영양학과) ;
  • 박예지 (숙명여자대학교 식품영양학과) ;
  • 조정현 (숙명여자대학교 식품영양학과) ;
  • 윤요한 (숙명여자대학교 위해분석연구센터) ;
  • 오혜민 (숙명여자대학교 위해분석연구센터)
  • Published : 2023.10.27

Abstract

Keywords

References

  1. 우영춘, 김영우, 김학영, 배승조, 김홍연, 정호열, 최완. 2016. 유전체분석용 슈퍼컴퓨팅 시스템 기술. 정보과학회지, 34(2), 43-56.
  2. 식품의약품안전처. 2023.09. 국가 식중독균 유전체 정보망. https://nginf.nifds.go.kr/cm/main.do
  3. Andermann T, Antonelli A, Barrett RL, Silvestro D. 2022. Estimating alpha, beta, and gamma diversity through deep learning. Front. Plant Sci. 13.
  4. Ann S, Choi Y, Yoon Y. 2023. Comparative genomic analysis and physiological properties of Limosilactobacillus fermentum SMFM2017-NK2 with ability to inflammatory Bowel Disease. Microorganisms 11(3): 547.
  5. Ayling M, Clark MD, Leggett RM. 2020. New approaches for metagenome assembly with short reads. Briefings. Bioinf. 21(2): 584-594. https://doi.org/10.1093/bib/bbz020
  6. Ballard D, Winkler-Galicki J, Wesoly J. 2020. Massive parallel sequencing in forensics: Advantages, issues, technicalities, and prospects. Int. J. Legal Med. 134(4): 1291-1303. https://doi.org/10.1007/s00414-020-02294-0
  7. Bleidorn C, Bleidorn C. 2017. Phylogenetic analyses. Phylogenomics: An Introduction, 143-172.
  8. Brown E, Dessai U, McGarry S, Gerner-Smidt P. 2019. Use of whole-genome sequencing for food safety and public health in the United States. Foodborne Pathog. Dis. 16(7): 441-450. https://doi.org/10.1089/fpd.2019.2662
  9. Cha ITA, Seo MJ. 2017. Analysis techniques for fermented foods microbiome. Food Sci. Ind. 50(1): 2-10.
  10. Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Yoon Y. 2020. Vitamin E (α-tocopherol) consumption influences gut microbiota composition. Int. J. Food Sci. Nut. 71: 221-225. https://doi.org/10.1080/09637486.2019.1639637
  11. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Titus Brown C, Porras-Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue), D633-D642. https://doi.org/10.1093/nar/gkt1244
  12. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and work-bench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-72. https://doi.org/10.1128/AEM.03006-05
  13. Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, Cesare AD. 2021. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11: 3030.
  14. Elbrecht V, Vamos EE, Steinke D, Leese F. 2018. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ. 6: e4644.
  15. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML, Freckleton R. 2013. Oligotyping: differentiating between closely related microbial taxa using 16s rRNA gene data. Methods Ecol. Evol. 4: 1111-1119. https://doi.org/10.1111/2041-210X.12114
  16. Goswami K, Sanan-Mishra N. 2022. Chapter 7. RNA-seq for revealing the function of the transcriptome. Bioinformatics: Methods Appl. 105-129.
  17. Haraksingh RR, Snyder MP. 2013. Impacts of variation in the human genome on gene regulation. J. Mol. Biol. 425(21): 3970-3977. https://doi.org/10.1016/j.jmb.2013.07.015
  18. Horner DS, Pesole G. 2004. Phylogenetic analyses: a brief introduction to methods and their application. Expert Rev. Mol. Diagn. 4: 339-350. https://doi.org/10.1586/14737159.4.3.339
  19. Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Vossen JVD, Tang S, Katase M, McClure P, Kimura B, Chai LC, Chapman J, Grant K. 2019. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol. 79: 96-115. https://doi.org/10.1016/j.fm.2018.11.005
  20. Jeske JT, Gallert C. 2022. Microbiome analysis via OTU and ASV-based pipelines-A comparative interpretation of ecological data in WWTP systems. Bioengineering (Basel) 9: 146.
  21. Kim JM, Song S, Jeon CO. 2009. Deciphering functions of uncultured microorganisms. Korean J. Microbiol. 45: 1-9. https://doi.org/10.4174/jkss.2009.77.Suppl.S9
  22. Kim S, Lee Y, Kim Y, Seo Y, Lee H, Ha J, Lee J, Choi Y, Oh,H, Yoon Y. 2020. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. App. Environ. Microbiol. 86: e03004-19.
  23. Lambert D, Carrillo CD, Koziol AG, Manninger P, Blais BW. 2015. Genesippr: A rapid whole-genome approach for the identification and characterization of foodborne pathogens such as priority Shiga toxigenic Escherichia coli . PLoS One. 10: 1-19. https://doi.org/10.1371/journal.pone.0122928
  24. Lindsey RL, Pouseele H, Chen JC, Strockbine NA, and Carleton HA. 2016. Implementation of whole genome sequencing (WGS) for identification and characterization of Shiga toxin-producing Escherichia coli (STEC) in the United States. Front Microbiol. 7: 1-9. https://doi.org/10.3389/fmicb.2016.00766
  25. Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12: 315-330. https://doi.org/10.1007/s13238-020-00724-8
  26. Lobo I. 2008. Basic local alignment search tool (BLAST). Nature Education 1(1).
  27. Lopez-Aladid R, Fernandez-Barat L, Alcaraz-Serrano V, Bueno-Freire L, Vazquez N, Pastor-Ibanez R, Palomeque, A, Oscanoa P, Torres A. 2023. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci. Rep. 13: 3974.
  28. Luscombe NM, Greenbaum D, Gerstein M. 2001. What is bioinformatics? An introduction and overview. Yearbook of Medical Informatics 10(01): 83-100. https://doi.org/10.1055/s-0038-1638103
  29. Mardis ER. 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9: 387-402. https://doi.org/10.1146/annurev.genom.9.081307.164359
  30. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589-594. https://doi.org/10.1016/j.gde.2005.09.006
  31. Noune C. 2017. Dynamics, diversity and evolution of Baculoviruses (Doctoral dissertation, Queensland University of Technology).
  32. Oh H. 2020. Correlation between gut microbiota composition and effect of fermented milk on anti-cholesterol, identification of enhancing bacteria. [Doctoral dissertation, Sookmyung Women's University].
  33. Oh H, Lee HJ, Lee J, Jo C, Yoon Y. 2019. Identification of microorganisms associated with the quality improvement of dry-aged beef through microbiome analysis and DNA sequencing, and evaluation of their effects on beef quality. J. Food Sci. 84: 2944-2954. https://doi.org/10.1111/1750-3841.14813
  34. Park SH, Choe HS, Gwon SY, Yun SR. 2014. Comparative performance evaluation of OTU binning methods for metagenomic sequence analysis. KIISE 32: 46-53.
  35. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue): D590-D596. https://doi.org/10.1093/nar/gks1219
  36. Ryu J, Choi Y, Yoon Y. 2023. Comparison of genetic variations between high-and low-risk Listeria monocytogenes isolates using whole-genome de novo sequencing. Front. Microbiol. 14.
  37. Srinivas M, O'sullivan O, Cotter PD, van Sinderen D, Kenny JG. 2022. The application of metagenomics to study microbial communities and develop desirable traits in fermented foods. Foods 11: 3297.
  38. The Gene Ontology Consortium. 2017. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 45(D1): D331-8. https://doi.org/10.1093/nar/gkw1108
  39. Tipton L, Zahn GL, Darcy JL, Amend AS, Hynson NA. 2022. Hawaiian fungal amplicon sequence variants reveal otherwise hidden biogeography. Microb. Ecol. 83: 48-57. https://doi.org/10.1007/s00248-021-01730-x
  40. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, lupski JR, Chinault C, Song X, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM. 2008. The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189): 872-876. https://doi.org/10.1038/nature06884
  41. Ye J, McGinnis S, Madden TL. 2006. BLAST: Improvements for better sequence analysis. Nucleic Acids Res. 34(suppl_2): W6-W9. https://doi.org/10.1093/nar/gkl164
  42. Zhang S, Wang B, Wan L, Li LM. 2017. Estimating phred scores of Illumina base calls by logistic regression and sparse modeling. BMC Bioinf. 18: 335.