• 제목/요약/키워드: whole cell conversion

검색결과 51건 처리시간 0.026초

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

Methane 자화성 세균 Methylosinus trichosporium OB3b에 의한 propene으로부터 propylene oxide의 생산 (Production of propylene oxide from propene by a methanotroph, Methylosinus trichosporium OB3b)

  • 정대석;백운화;방원기
    • Applied Biological Chemistry
    • /
    • 제34권4호
    • /
    • pp.386-392
    • /
    • 1991
  • Propene으로부터 propylene oxide를 생산하기 위하여, methane 자화성 세균인 Methylosinus trichosporium OB3b를 이용하였다. 이 균주는 methane을 methanol로 전환시키는 methane monooxygenase를 가지고 있는데, 이 효소는 또한 propene을 propylene oxide로 전환시킬 수 있다. 이 균주의 휴지세포를 이용하여 propene으로부터 propylene oxide 생산의 최적조건을 검토하였다. 최적 pH는 7.0이었으며, 최적온도는 $35^{\circ}C$이었다. 최종산물인 propylene oxide는 propylene oxide의 생산반응을 저해하지 않았으며, 더 이상 대사되지도 않았다. Methane 대사중간물질들(methanol, formaldehyde, formic acid)의 첨가는 propylene oxide의 생산을 $3{\sim}4$배 증가시켰으며, 특히 methanol 첨가의 경우에 가장 좋은 효과를 보였다. 상기의 최적조건하에서, 1시간 반응시 propylene oxide의 최대 생산량은 14.2 mM이었으며, 이 때 공급한 propene으로부터 propylene oxide로의 전환율은 약 8.0%이었다.

  • PDF

장 파장 대 태양광을 흡수하는 염료감응형태양전지에 대한 염료와 합성 (Synthesis and Photovoltaic Performance of Long Wavelength Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;윤주영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of $TiO_2$ are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

NIR 흡수 염료를 이용한 염료감응형 태양전지 (Synthesis and Photovoltaic Performance of NIR Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;정미란;이민경;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.118.1-118.1
    • /
    • 2011
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of TiO2 are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

고체산화물 연료전지용 디젤 자열개질기의 장기성능에 미치는 H2O/C와 O2/C 몰 비의 영향 (Effect of the Molar H2O/ and the Molar O2/C Ratio on Long-Term Performance of Diesel Autothermal Reformer for Solid Oxide Fuel Cell)

  • 윤상호;강인용;배규종;배중면
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.110-115
    • /
    • 2007
  • 고온형 연료전지인 고체산화물 연료전지(solid oxide fuel cell, SOFC)는 연료에 대한 유연성(fuel flexibility)이 높다. 따라서 높은 에너지 밀도를 가진 디젤을 개질하여 SOFC를 운전하는 것은 효과적인 방법이다. 하지만 디젤이 가지는 특성으로 인해 디젤 자열개질기(autothermal refromer)는 운전 시간에 따라 탄소 침적(carbon deposition) 현상이 발생하여 개질기의 성능이 쉽게 저감된다. 개질기 성능 저감 현상 때문에 개질 가스들 중에 탄화수소 생성량이 많아지며, 이는 SOFC 성능도 저감시킨다. 이러한 현상은 연료극에 공급되는 탄화수소가 야기하는 탄소 침적으로 사료된다. 본 연구에서는 탄화수소가 SOFC에 주는 성능 저감을 확인하였으며, 연료전지 성능 저감을 줄이기 위한 디젤 자열개질기 반응물들의 조건 선정($H_2O/C$$O_2/C$의 몰 비)을 통해 디젤 자열 개질기 특성을 살펴보았다. 특히 $H_2O/C=0.8$$O_2/C=3$인 디젤 자열개질 반응 조건에서 좋은 개질 성능을 확인할 수 있었다.

교반형 막 반응기를 이용한 재조합 인간 세포의 무혈청 배지에 의한 $\gamma$-Interferon의 생산 (Economic Production of $\gamma$-Interferon from Recombinant Human Cells in Serum Free Medium by a Moving Aeration Membrane Bioreactor)

  • 박영식;김현규;임서규;박경유;이현용
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.389-394
    • /
    • 1994
  • 8 X 10$^{6}$(viable cells/ml) of maximum cell density and 9000(IU/ml) of $\gamma$-IFN production were obtained at 55(ml/hr) of a perfusion rate by cultivating HSF cells using a moving membrane aeration bioreactor. This system proves to be an efficient culture process by maintaning 90% of viable cells during the whole cultivation periods. The metabolic molar quotient of glucose to lactate was 0.81 for overall ranges of glucose consumed while the evolution of ammonia was not linearly related to the consumption of glutamine. Low molar conversion ratio was observed in low consumptions of glutamine and high molar conversion ratio in high comsumptions. It also shows that the glutamolysis plays important role in the steady state conditions by evolving larger quantities of ammonia than lactate. At the above of 50 rpm, which is the optimum agitation speed for this bioreactor, the cell growth was severely affected while the IFN production was less decrea- sed, maintaing 1.5 X 10$^{-3}$(IU/cell/day) specific IFN production rate. The cumulatvie $\gamma$-IFN production was 7.2 X 10$^{8}$(IU) for 70 days of the cultivation, which yields 1 X 10$^{7}$ (IU/day) of IFN production rate. Therefore, a commercial production of $\gamma$-IFN by this culture process can be achievable by maintaining the above IFN productivity in a scaled-up culture system.

  • PDF

Evaluation and cloning of a (R)-stereospecific esterase from Bacillus stearothermophilus JY144

  • 김지연;김윤정;최기섭;김근중;유연우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.457-460
    • /
    • 2002
  • In an effort to isolate novel strains expressing a thermostable esterase that hydrolyzed the rac-ketoprofen ethyl ester to ketoprofen in the stereospecific manner, we screened various soils and composts from broad ecological niches in which the activity was expected to be found. Three hundreds of microbial strains were tested to determine their ester-hydrolyzing activity by using an agar plate containing insoluble tributyrin as an indicative substrate, and then further screened by activity on the (R,S)-ketoprofen ethyl ester. Twenty-six strains were screened primarily at high growth and incubation temperature and further compared the ability to ethyl ester-hydrolyzing activity in terms of conversion yield and chiral specificity. Consequently, a strain JYl44 was isolated as a novel strain that produced a (R)-stereospecific esterase with high stability and systematically identified as a Bacillus stearothermophilus JY144. The enzyme indeed stables at a broad range of temperature, upto 65 $^{\circ}C$, and pH ranging from 6.0 to 10.0. The optimal temperature and pH for enzymatic conversion were 50 $^{\circ}C$ and 9.0, respectively. Based on the observations that resulted a poor cell growth, and enzyme expression in wild type strain, we further attempted the gene cloning into a general host Escherichia coli and determined its primary structure, concomitantly resulting a high level expression of the enzyme. The cloned gene had an open reading frame (250 amino acids) with a calculated molecular mass of 27.4 kDa, and its primary structure showed a relative high homology (45-52 %) to the esterases from Streptomyces and Bacillus strains. The recombinant whole cell enzyme could efficiently convert the rac-ketoprofen ethyl ester to (R)-ketoprofen, with optical purity of 99 % and yield of 49 %.

  • PDF

A New Efficient Mppt Control Algorithm for Low Insolation Intensity

  • Yu, Gwon-Jong;Jung, Young-Seok;Park, Ju-Yeop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.214-218
    • /
    • 2002
  • In this paper, the effectiveness of three different control algorithms are thoroughly investigated via simulation and a proposed efficiency evaluation method of experimentation. Both the steady state and transient characteristics of each control algorithm along with its measured efficiency are analyzed. Finally, a novel two-mode maximum power point tracking (MPPT) control algorithm combining the constant voltage control and the incremental conduction (IncCond) methods is proposed to improve the efficiency of the 3KW PV power generation system at different insolation conditions. Experimental results show that the proposed two-mode MPPT control provides excellent performance at less than 30% insolation intensity, covering the whole insolation area without additional hardware circuitry.

박하(Mentha piperita) 세포 현탁배양에서 멘톨생합성 경로 (Menthol biosynthesis pathway in Mentha piperita suspension cells)

  • 박시형;채영암;이형주;김수언
    • Applied Biological Chemistry
    • /
    • 제36권5호
    • /
    • pp.358-363
    • /
    • 1993
  • 박하(Mentha piperita) 세포현탁배양에(-)-menthol 생합성 중간체를 투여하여 배양된 세포의 대사경로를 연구하였다. (-)-Limonene을 투여 하였을 때 이는 다른 대사물로 변환되지 않는 것으로 관찰 되었다. (+)-Pulegone은 (+)-isomenthone 및 (-)-menthone으로 변환되었으며, (-)-menthone은 (-)-menthol로 변환되었다. 이 실험은 현탁배양세포가 대부분의 생합성 활성을 유지하고 있으며 (-)-limonene hydroxylase의 활성이 제한적임을 보여 주었다. (-)-Isopiperitenone을 투여하였을 때는 (+)-pulegone, piperitenone, (-)-7-hydroxyisopiperitenone, (R)- 및 (S)-6-hydroxyisopiperitenone이 생성되었다.

  • PDF

Proteome Analysis for 3T3-L1 Adipocyte Differentiation

  • Rahman, Atiar;Kumar, Suresh G.;Lee, Sung-Hak;Hyun, Sun-Hwang;Kim, Hyun-Ah;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1895-1902
    • /
    • 2008
  • Adipose tissue is an important endocrine organ involved in the control of whole body energy homeostasis and insulin sensitivity. Considering the increased incidence of obesity and obesity-related disorders, including diabetes, it is important to understand thoroughly the process of adipocyte differentiation and its control. Therefore, we performed a differential proteome mapping strategy using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3-L1 pre-adipocytes in response to an adipogenic cocktail. In the current study, we identified 46 differentially expressed proteins, 6 of which have not been addressed previously in 3T3-L1 cell differentiation. Notably, we found that phosphoribosyl pyrophosphate synthetase (PRPS), a regulator of cell proliferation, was preferentially expressed in pre-adipocytes than in fully differentiated adipocytes. In conclusion, our results provide valuable information for further understanding of the adipogenic process.