• Title/Summary/Keyword: white-light LED

Search Result 403, Processing Time 0.032 seconds

Efficiency of Closed Cutting Propagation Affected by Closed Periods, Leaflet Number and Photoperiod in Rose (Rosa hybrida) (밀폐 기간, 소엽수 및 광주기에 따른 장미의 밀폐삽목 번식 효율)

  • Yang, Gyeong Rok;Jung, Hyun Hwan;Park, Ki Young;Song, Kwan Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.212-220
    • /
    • 2022
  • When it comes to single node leafy stem cuttings of rose (Rosa hybrida), environmental management such as air temperature, relative humidity, and light affect productivity. In order to investigate the effect of air temperature and relative humidity on the cutting success rate and rooted cuttings quality, a transparent airtight box was used to implement a closed system. We have also tried to find out the most effective photoperiod and the number of leaflets in closed system using artificial light (white LED, 104.0 µmol·m-2·s-1 photosynthetic photon flux density). The first experiment was conducted for a total of 6 weeks under 4 airtight period conditions. The number of roots and longest root length decreased as the airtight period increased. But there were no significant differences in the survival rate, shooting rate, and rooting rate according to airtight periods. In the second experiment the results indicated that survival and shooting rate were significantly affected by the photoperiod (0/24, 2/22, 4/20, 8/16, and 16/8 h), the number of leaflets (0, 2, and 4 leaflets) of the cuttings and their interaction. The survival rate was the highest in the 16-h day length and 4 leaflets. By considering survival rate and shooting rate with energy efficiency, the 8-h day length and 2 or 4 leaflets were judged to be the most effective.

Effect of Different Nutrient Solution and Light Quality on Growth and Glucosinolate Contents of Watercress in Hydroponics (배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향)

  • Choi, Jae Yun;Kim, Sung Jin;Bok, Kwon Jeong;Lee, Kwang Ya;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.371-380
    • /
    • 2018
  • Aim of this study was to investigate the effects of different nutrient solutions and various light qualities generated by LED on the growth and glucosinolates contents of watercress (Nasturtium officinale) grown under hydroponics for 3 weeks. The seeds of watercress were sown on crushed rockwool media and raised them for two weeks. They were transplanted in a semi-DFT (deep flow technique) hydroponics system. A controlled-environment room was maintained at $20{\pm}1^{\circ}C$ and $16{\pm}1^{\circ}C$ temperatures and $65{\pm}10%$ and $75{\pm}10%$ relative humidity (day and night, respectively), with a provided photosynthetic photon flux density (PPFD) of $180{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 16/8h. To find out the best kinds of nutrient solutions for growing watercress, Otsuka House 1A (OTS), Horticultural Experiment Station in Korea (HES), and Netherland's Proefstaion voor Bloemisterij en Gasgroente (PBG) were adapted with initial EC of $1.0-1.3dS{\cdot}m^{-1}$ and pH of 6.2, irradiating PPFD with fluorescent lamps (Ex-1). Either monochromatic (W10 and R10) or mixed LEDs (R5B1, R3B1, R2B1G1, and W2B1G1) were irradiated with a differing ratio of each LED's PPFD to understanding light quality on the growth and glucosinolates contents of watercress (Ex-2). Although significant difference in the shoot growth of watercress was not found among three nutrient solutions treatments, but the root fresh weight increased by 13.7% and 55.1% in PBG and OTS compared to HES, respectively. OTS increased the gluconasturtiin content by 96% and 65% compared to PBG and HES. Compared with the white light (W10), the red light (R10) showed a 101.3% increase in the shoot length of watercress. Increasing blue light portion positively affected plant growth. The content of total glucosinolates in watercress was increased by 144.5% and 70% per unit dry weight in R3B1 treatment compared with R2B1G1 and W10 treatments, respectively. The growth and total glucosinolates contents of the watercress were highest under R3B1 among six light qualities.

Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs (LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myeong;Park, Jeong-Gyu;Kim, Gyeong-Nam;Lee, Seung-Jae;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • Nowadays, LEDs has been applied to the luminescent devices of various fields because of the invention of high efficient blue chip. Recently, especially, the white LEDs composed of InGaN blue chips and a yellow phosphor (YAG:Ce3+) have been investigated extensively. With the exception of YAG:Ce3+ phosphor, however, there are no reports on yellow phosphor that has significant emission in the 450~470 nm excitation range and this LED system is the rather low color rendering index due to their using two wavelength. Hence, we have attempted to synthesize thiogallate phosphors that efficiently under the long wavelength excitation range in the present case. Among those phosphors, we have synthesized Sr2Ga2S5:Eu2+ phosphor by change the host material of SrGa2S4:Eu2+ which is well known phosphor and we investigated the luminescent properties. In order to obtain the harmlessness and simplification of the synthesis process, sulfide materials and mixture gas of 5 % H2/95 % N2 were used instead of the CS2 or H2S gas. The prepared phosphor shows the yellow color peaking at the 550 nm wavelength and it possible to emit efficiently under the broad excitation band in the range of 300~500 nm. And this phosphor shows high luminescent intensity more than 110 % in comparison with commercial YAG:Ce3+ phosphor and it can be applied for UV LED due to excitation property in UV region.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

Antioxidant and Tyrosinase Inhibition Activity Promoting Effects of Perilla by the Light Emitting Plasma (발광플라즈마 처리에 의한 들깨 부위별 항산화 및 Tyrosinase 저해 활성 효과)

  • Yoo, Ji Hye;Choi, Jae Hoo;Kang, Byeong Ju;Jeon, Mi Ran;Lee, Chan Ok;Kim, Chang Heum;Seong, Eun Soo;Heo, Kweon;Yu, Chang Yeon;Choi, Seon Kang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Background: The light emitting plasma (LEP) has recently attracted attention as a novel artificial light source for plant growth and functional component enhancement. We investigated the effects of LEP on whitening and antioxidant activities of the plant parts of perilla. Methods and Results: Previously germianted seeds of perilla were cultivated under different light conditions (fluoresce lamp, LED red, blue, white, green, and LEP) in a culture room for 2 months. Parts of perilla were harvested and extracted in 70% EtOH. The extracts were used to detect total phenolic contents, total flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and tyrosinase inhibition activity as indicators of biological activity. Biological activity was highest in seedlings grown under LEP. The total phenolic content was highest in the stems and the total flavonoid content was highest in the roots of perilla exposed to LEP. The DPPH and ABTS radical activity in all the parts of perilla exposed to LEP were higher by approximately three-fold compared to that in the control (fluoresce lamp). The reducing power values of perilla significantly increased after treatment with LEP. In addition, all the extract of perilla plants exposed to LEP promoted the tyrosinase inhibitory activity. These results suggest that LEP can be an important artificial light source for enhancement of biological activity. Conclusions: LEP could promote whitening and antioxidant activity of perilla.

Optical Properties of CaYAlO4:Tb3+/Eu3+/Ce3+ Phosphors (CaYAlO4:Tb3+/Eu3+/Ce3+형광체의 광학적 특성 분석)

  • Kang, Taewook;Ryu, Jongho;Kim, Jongsu;Kim, Gwang Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.86-90
    • /
    • 2017
  • $Tb^{3+}$ or $Eu^{3+}$ or $Ce^{3+}$-doped $CaYAlO_4$ phosphor were synthesized by solid-state method. $CaYAlO_4:Tb^{3+}$ is shown that the $Tb^{3+}$-doping concentration has a significant effect on the $^5D_4/^5D_3{\rightarrow}7F_J$ (J=6,...,0) emission intensity of $Tb^{3+}$. The $CaYAlO_4:Tb^{3+}$ phosphors show tunable photoluminescence from blue to yellow with the change of doping concentration of $Tb^{3+}$ ions. The $CaYAlO_4:Eu^{3+}$ phosphors exhibit a red-orange emission of $Eu^{3+}$ corresponding to $^5D_0$, $_{1,2}{\rightarrow}^7F_J$ (J=4,...,0) transitions. The $CaYAlO_4:Ce^{3+}$ phosphors show a blue emission due to $Ce^{3+}$ ions transitions from the 5d excited state to the $^2F_{5/2}$ and $^2F_{7/2}$ ground states. The decay time of $CaYAlO_4:Tb^{3+}$ phosphors decrease from 1.33 ms to 0.97 ms as $Tb^{3+}$ concentration increases from 0.1 mol% to 7 mol%. The decay time of $CaYAlO_4:Eu^{3+}$ phosphors increase from 0.94 ms to 1.17 ms as $Eu^{3+}$ concentration increases from 1 mol% to 9 mol%.

  • PDF

Analysis of Growth and Flowering of Thymus quinquecostatus Using Smart Farming System (스마트 재배시스템을 활용한 백리향 생장 및 개화 분석)

  • Mi Hee Kim;Ui-Lim Choi;Hyeonbin Kim;Kwang Sang Kim;Min Sook Kim;Min Ji Kim;Seung Il Jeong;Gun Woong Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.84-84
    • /
    • 2022
  • 백리향(Thymus quinquecostatus)은 꿀풀과의 낙엽반관목으로 국내에서 자생하는 허브 식물 중 하나이다. 백리향은 특유의 좋은 향기 및 항산화, 항염증, 항균, 미백 등의 효능을 가지는 각종 폴리페놀 성분을 함유하고 있어 의약품이나 기능성 식품, 화장품의 천연 소재 원료로 활용되고 있다. 국내에서 백리향은 재배 환경에 맞추어 주로 고산지대의 노지에서 재배되고 있다. 노지 재배는 지역, 시기, 기후 등의 외부환경에 영향을 받아서 백리향의 유효성분, 품질 및 생산성을 안정적으로 유지하기 어렵다는 한계를 가지고 있다. 따라서 본 연구에서는 스마트팜 시스템을 활용하여 백리향의 유효 성분 등을 안정적으로 얻기 위한 생장조건을 탐색하기 위해 4종의 Light Emitting Diode(LED) 광원과 4종의 토양 조성에 따라서 백리향의 생육조건을 수행하였다. LED는 white, purple, RGB1, RGB2를 사용하였으며, 토양은 상토:펄라이트 비율(상토, 5:1, 3:1, 1:1)로 조성하여 백리향 묘목을 이식한 뒤 생장과 개화시기를 분석하였다. 재배환경은 백리향 재배지의 기상 데이터를 참고하여 동일하게 설정하였으며, 총 8주 동안 생육상태를 관찰하였다. 연구 결과 백리향 재배 4주차에 일부 개체에서 봉오리가 올라오며 개화를 시작하였으며, 8주차에는 대부분의 조건에서 개화를 관찰할 수 있었다. 백리향의 지상부 면적을 비교한 결과 가장 우수한 생장을 보이는 조건은 토양은 3(상토):1(펄라이트) 비율로 분석되었다. 따라서 이번 연구 결과를 바탕으로 백리향 재배에 스마트팜 농업 기술을 활용한다면 기존 노지 재배 한계를 보완하여 안정적이고 지속적인 백리향을 생산할 수 있을것으로 기대된다.

  • PDF

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

고출력 GaN-based LED의 열적 설계 및 패키징

  • 신무환
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.24-24
    • /
    • 2003
  • Research activity in the III-V nitrides materials system has increased markedly in the past several years ever since high-brightness blue light-emitting diodes (LEDs) became commercially available. Despite of excellent optical properties of the GaN, however, inherently poor thermal property of the sapphire used as a substrate material n these devices may lead to thermal degradation of devices, especially during their high power operation. Therefore, dependable thermal analysis and packaging schemes of GaN-based LEDs are necessary for solid lighting applications under high power operation. In this paper, emphasis will be placed upon thermal design of GaN-based LEDs. Thermal measurements of LEDs on chip and packaging scale were performed using the liquid crystal thermographic technology and micro thermocouples for different bias conditions. By a series of optical arrangement, hot spots with specific transition temperatures were obtained with increasing input power. Thermal design of LEDS was made using the finite element method and analytical unit temperature profile approach with optimal boundary conditions. The experimental results were compared to the simulated data and the results agree well enough for the establishment of dependable prediction of thermal behavior in these devices. The paper will present a more detailed understanding of the thermal analysis of the GaN-based blue and white LEDs for high power applications.

  • PDF

1.6 M SOLAR TELESCOPE IN BIG BEAR - THE NST

  • GOODE PHILIP R.;DENKER CARSTEN.J.;DIDKOVSKY LEONID I.;KUHN J. R.;WANG HAIMIN
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.125-133
    • /
    • 2003
  • New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather - an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Ha observations) and Singer-Link (full disk H$\alpha$, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) - all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.