• 제목/요약/키워드: white rot.

검색결과 436건 처리시간 0.032초

Effect of Acaromyces Ingoldii Secondary Metabolites on the Growth of Brown-Rot (Gloeophyllum Trabeum) and White-Rot (Trametes Versicolor) Fungi

  • Olatinwo, Rabiu;So, Chi-Leung;Eberhardt, Thomas L.
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.506-511
    • /
    • 2019
  • We investigated the antifungal activities of an endophytic fungus identified as Acaromyces ingoldii, found on a loblolly (Pinus taeda L.) pine bolt in Louisiana during routine laboratory microbial isolations. The specific objectives were to determine the inhibitory properties of A. ingoldii secondary metabolites (crude extract) on the mycelial growth of a brown-rot fungus Gloeophyllum trabeum and a white-rot fungus Trametes versicolor, and to determine the effective concentration of A. ingoldii crude preparation against the two decay fungi in vitro. Results show the crude preparation of A. ingoldii from liquid culture possesses significant mycelial growth inhibitory properties that are concentration dependent against the brownrot and white-rot fungi evaluated. An increase in the concentration of A. ingoldii secondary metabolites significantly decreased the mycelial growth of both wood decay fungi. G. trabeum was more sensitive to the inhibitory effect of the secondary metabolites than T. versicolor. Identification of specific A. ingoldii secondary metabolites, and analysis of their efficacy/specificity warrants further study. Findings from this work may provide the first indication of useful roles for Acaromyces species in a forest environment, and perhaps a future potential in the development of biocontrol-based wood preservation systems.

Stem Rot of Tomato Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Mycobiology
    • /
    • 제30권4호
    • /
    • pp.244-246
    • /
    • 2002
  • A destructive stem rot of tomato(Lycopersicon esculentum) occurred sporadically some farmers' fields in Jinju City, Gyeongnam province in Korea. The infected plants also showed stem, crown rot or whole plant blight. White mycelium spread over stems of infected plants and formed sclerotia on the old lesions nearby soil surface. The fungus showed maximum mycelial growth around $30^{\circ}C$. The fungus formed white colony on PDA, usually with many narrow mycelial strands in the aerial mycelium and the width were $4.0{\sim}9.8{\mu}m$. The typical clamp connections were formed on the mycelium. Numerous sclerotia was formed on PDA at $30^{\circ}C$. The shape of sclerotia was globoid and $1.0{\sim}3.0$ mm in size. The fungus was isolated repeatedly from the infected tissues and the pathogenicity was confirmed to tomato and identified as Sclerotium rolfsii. This is the first report on the stem rot of tomato caused by S. rolfsii in Korea.

Stem Rot of Tawny Daylily(Hemerocallis fulva) Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Mycobiology
    • /
    • 제32권2호
    • /
    • pp.95-97
    • /
    • 2004
  • In July 2002, a destructive stem rot of tawny daylily(Hemerocallis fulva) was occurred sporadically in exhibition farm of Gyeongsangnam-do Agricultural Research and Extension Services located in Hamyang-gun, Korea. The fungus also caused collar and crown rot, and systemic wilt or blight of whole plant. White mycelium spread over stems and petioles of infected plants and sclerotia were formed on the old lesions and near the soil surface. The optimum temperature for mycelial growth and scierotial formations was $30^{\circ}C$ on PDA. The mycelial width ranged $4.2{\sim}10.4{\mu}m$ and the color was white, usually many narrow mycelial strand grew in the aerial mycelium and formed clamp connection. The shape of sclerotia was spherical and $1.0{\sim}3.2$ mm in diameter. The fungus was isolated repeatedly from the infected tissues and confirmed its pathogenicity to Hemerocallis fulva and identified as Sclerotium rolfsii. This is the first report on the stem rot of H. fulva caused by S. rolfsii in Korea.

Occurrence of Stem Rot of Disporum smilacinum Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Jee, Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.212-214
    • /
    • 2007
  • In 2005 and 2007, a basal stem rot of Disporum smilacinum caused by Sclerotium rolfsii occurred sporadically in a herb farm at Hamyang, Korea. The symptom initiated with water-soaking lesion and progressed into stem rot and wilt of a whole plant. Severely infected plants were blighted and died eventually. White mycelial mats appeared on the lesion at early stage and a number of sclerotia were formed on the stem near the soil line. The sclerotia were globoid in shape, 1-3 mm in size and white to brown in color. The optimum temperature for the growth and sclerotia formation was 30 on PDA and the hyphal width was measured $3-8{\mu}m$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. On the basis of symptom, mycological characteristics and pathogenicity to the host plant, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report on the stem rot of D. smilacinum caused by S. rolfsii in Korea.

Stem Rot of Strawberry Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Shen, Shun-Shan;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.103-105
    • /
    • 2004
  • A destructive stem rot of strawberry (Fragaria x ananassa cv. Akihime) sporadically occurred in farmers' fields in Daegok-myon, Jinju city, Gyeongnam province in Korea. The infected plants showed stem and crown rot, with occasional blighting of the whole plant. White mycelia appeared on stems of infected clones and sclerotia formed on the old lesions near soil surface. The fungus formed white colony on PDA and showed maximum mycelial growth and sclerotial formation at $30^{\circ}C$. The fungus usually have many narrow hyphal strands, 2.6-10.0 $\mu\textrm{m}$ in width, in the aerial mycelium. Typical clamp connections were formed on the mycelium. Sclerotia were spherical and 1.0-2.4 mm in size. The fungus was repeatedly isolated from infected tissues and identified as Sclerotium rolfsii. Its patho-genicity was confirmed when inoculated onto straw-berry. This is the first report on the stem rot of strawberry caused by S. rolfsii in Korea.

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Control of Anthracnose and Gray Mold in Pepper Plants Using Culture Extract of White-Rot Fungus and Active Compound Schizostatin

  • Dutta, Swarnalee;Woo, E-Eum;Yu, Sang-Mi;Nagendran, Rajalingam;Yun, Bong-Sik;Lee, Yong Hoon
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.87-96
    • /
    • 2019
  • Fungi produce various secondary metabolites that have beneficial and harmful effects on other organisms. Those bioactive metabolites have been explored as potential medicinal and antimicrobial resources. However, the activities of the culture filtrate (CF) and metabolites of whiterot fungus (Schizophyllum commune) have been underexplored. In this study, we assayed the antimicrobial activities of CF obtained from white-rot fungus against various plant pathogens and evaluated its efficacy for controlling anthracnose and gray mold in pepper plants. The CF inhibited the mycelial growth of various fungal plant pathogens, but not of bacterial pathogens. Diluted concentrations of CF significantly suppressed the severity of anthracnose and gray mold in pepper fruits. Furthermore, the incidence of anthracnose in field conditions was reduced by treatment with a 12.5% dilution of CF. The active compound responsible for the antifungal and disease control activity was identified and verified as schizostatin. Our results indicate that the CF of white-rot fungus can be used as an eco-friendly natural product against fungal plant pathogens. Moreover, the compound, schizostatin could be used as a biochemical resource or precursor for development as a pesticide. To the best of our knowledge, this is the first report on the control of plant diseases using CF and active compound from white-rot fungus. We discussed the controversial antagonistic activity of schizostatin and believe that the CF of white-rot fungus or its active compound, schizostatin, could be used as a biochemical pesticide against fungal diseases such as anthracnose and gray mold in many vegetables.

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • 식물병연구
    • /
    • 제26권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Sclerotium rolfsii에 의한 미나리 흰비단병 발생 (Occurrence of the Collar Rot of Water Cress (Oenanthe javanicav) Caused by Sclerotium rolfsii)

  • 권진혁;강수웅;박창석
    • 한국균학회지
    • /
    • 제29권1호
    • /
    • pp.72-74
    • /
    • 2001
  • 2000년 9월 상순경 경상남도 의령군 가례면 밭 미나리 재배포장에서 미나리 흰비단병(Sclerotium rolfsii)이 대발생하였다. 이 병의 병징은 미나리 줄기 절단부가 갈색으로 변하고 물러져 썩으며 그 위에 흰색의 곰팡이가 솜털처럼 밀생하고, 병발부위에 작은 갈색의 둥근 균핵을 형성하며 지제부 부근의 토양 표면에도 형성되었다. 균사의 폭은 $4.1{\sim}10.3{\mu}m$이고, 균사 생육적온은 $30^{\circ}C$에서 90.0 mm로 가장 잘 자랐으며 $5^{\circ}C$$45^{\circ}C$에서는 자라지 않았다. PDA 배지상에는 $20^{\circ}C$에서 균핵을 많이 형성하였다. 균총의 색깔은 흰색이며 clamp connection이 있는 것이 특징이다. 균핵의 모양은 구형이며 크기는 $1.0{\sim}6.3{\times}10{\sim}5.2mm$ (평균 $2.4{\sim}2.2mm$)이었다. 이 병원균을 Sclerotium rolfsii로 동정하였고, 미나리 흰비단병으로 명명할 것을 제안한다.

  • PDF

The Selective Visualization of Lignin Peroxidase, Manganese Peroxidase and Laccase, Produced by White Rot Fungi on Solid Media

  • Ryu, Won-Youl;Jang, Moon-Yup;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.130-134
    • /
    • 2003
  • A visual method for the selective screen Eng of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and lactase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and lactase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.