• Title/Summary/Keyword: white OLED

Search Result 106, Processing Time 0.032 seconds

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF

Fluorescent RGB and White OLEDs with High Performance

  • Jinde, Yukitoshi;Tokairin, Hiroshi;Arakane, Takashi;Funahashi, Masakazu;Kuma, Hitoshi;Fukuoka, Kenichi;Ikeda, Kiyoshi;Yamamoto, Hiroshi;Hosokawa, Chishio
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.351-354
    • /
    • 2006
  • We developed highly efficient fluorescent dopants for full-color OLEDs. For blue, green and red OLEDs, current efficiencies of 8.7cd/A, 20.5 cd/A and 11.4 cd/A at $10mA/cm^2$ were achieved, respectively. Lifetime of the blue device was estimated to be 23,000hours at an initial luminance of $1,000cd/m^2$. Moreover, long lifetime over 100,000 hours was estimated in the green and red devices. Furthermore, we obtained a three-component white OLED by using these new fluorescent materials. This white OLED shows a current efficiency of 16.1cd/A with extrapolated lifetime over 70,000 hours at $1,000cd/m^2$, and more excellent color reproducibility for full-color displays with color filters and general lighting, compared to previous fluorescent white OLEDs.

  • PDF

White OLEDs with a Single Emissive Layer (단일발광층을 이용한 백색 OLED)

  • Chu, Hye-Yong;Lee, Jeong-Ik;Yang, Yong-Suk;Oh, Ji-Young;KoPark, Sang-Hee;Kim, Mi-Kyung;Hwang, Chi-Sun;Jung, Byung-Jun;Shim, Hong-Ku;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.43-46
    • /
    • 2004
  • We demonstrated efficient white light emitting OLEDs with a single emissive layer structure, which was blue-emitting 1,4-bis[2,2-diphenylvinyl]biphenyl (DPVBi) doped with blue luminescent amino-substituted distyrylarylene amine (DSA-amine) and red luminescent [2,6-bis[2-[5-(dibutylamino) phenyl]vinyl]-4H -pyran-4-ylidene]propanedinitrile (DADB). Through the optimization of the device structure, the white light emission with full visible spectral range was obtained. Its CIE color coordinates was (0.32,0.42) at 10 $mA/cm^2$ and the external quantum efficiency, the luminance efficiency and the luminance yield were 3.7 %, 3.3 lm/W and 9.0 cd/A, respectively.

  • PDF

White Oganic Light-Emitting Diodes based on Simply Modified Anthracene and Rubrene (안트라센의 단순 유도체와 루브렌을 이용한 백색 유기전기발광소자)

  • Kim, Si-Hyun;Lee, Seung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.589-595
    • /
    • 2022
  • The white OLED is fabricated with the anthracene-based blue emitting material, 9-(2-naphthyl)-10-(p-tolyl)anthracene (2-NTA) in various volume-ratios of orange dopant, rubrene, which results in pure white emission with C.I.E. coordinate of ~(0.32, 0.39). The devices with <1.5% rubrene show better EL properties (efficiency) than >3% devices. Furthermore the turn-on voltage of 2-NTA WOLED (3.7 V) is lower than that of 2-NTA blue OLED (5.4 V) at the same condition. Conclusively 2-NTA with rubrene less than 1.5% (v/v) could be utilized for the pure WOLED.

Recent Progress on Organic Emitters for Organic Light Emitting Diode Lightings (유기발광다이오드 조명용 유기발광체의 최근 동향)

  • Jung, Hyocheol;Lee, Hayoon;Kang, Seokwoo;An, Byeong-Kwan;Yook, Kyoung Soo;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.455-466
    • /
    • 2016
  • Organic light-emitting diode (OLED) has drawn a lot of attention in academic and industrial fields, which has been successfully commercialized in mobile phones and TV's. In the field of lighting, unlike the existing incandescent or fluorescent lighting, OLED has distinctive qualities such as surface lighting-emission, large-area, lightweight, ultrathin, flexibility in addition to low energy use. This article introduces prominent fluorescent, phosphorescent, and luminescent materials applied to white OLED (WOLED). The understanding and systematic classification of previously studied substances are expected to be greatly helpful for the development of new luminous materials in future.

White OLED Structures Optimized for RGB and RGBW Formats

  • Hatwar, T.K.;Spindler, J.P.;Ricks, M.L.;Young, R.H.;Cosimbescu, L.;Begley, W.J.;Slyke, S.A. Van
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.816-819
    • /
    • 2004
  • White-emitting OLEDs have been prepared that provide emission close to 6500 K color temperature (D65) with exceptional stability and high efficiency. The combination of host and dopant materials offers significant improvement for full color displays, in terms of power consumption, with minimal changes in color and efficiency with current density. These features are important for fabricating RGB and RGBW full color displays using white OLEDs with color filters.

  • PDF

Properties of high efficiency 2-${\lambda}$ white organic light emitting diode (고 효율 2파장 백색 유기 발광 소자의 발광 특성)

  • Lee, Oun-Gyu;Oh, Young-Jun;Ko, Young-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.324-325
    • /
    • 2006
  • In order to develop high efficiency white organic light-emitting diodes (OLEDs), OLED devices consisted of red and blue emitting layers (EMLs) were fabricated and the effect of respective layer thickness and the order of layer stacking on the luminous efficiency was evaluated Red/blue structure showed higher efficiency than blue/red, due to the higher exiton formation. In the blue layer of red/blue structure. However, the efficiency of the red/blue significantly depended on the thickness of the red layer, whereas the thickness of the blue layer was not affect so much. The optimum thickness of the red layer was 20 ${\AA}$, where the luminous and power efficiencies were 155 cd/A and 10.51 lm/W at 1000~3000$cd/m^2$ respectively and the maximum luminance was about 80,000 $cd/m^2$.

  • PDF

Low voltage driving white OLED with new electron transport layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Kim, Tae-Yong;Suh, Won-Kyu;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

Phosphorescent Iridium Complexes for OLEDs Based on 1-Phenylpyrazole Ligands with Fluorine and Methyl Moieties

  • Yoon, Seung Soo;Song, Ji Young;Na, Eun Jae;Lee, Kum Hee;Kim, Seong Kyu;Lim, Dong Whan;Lee, Seok Jae;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1366-1370
    • /
    • 2013
  • A series of phosphorescent iridium(III) complexes 1-4 based on phenylpyrazole were synthesized and their photophysical properties were investigated. To evaluate their electroluminescent properties, OLED devices with the structure of ITO/NPB/mCP: 8% Iridium complexes (1-4)/TPBi/Liq/Al were fabricated. Among those, the device with 3 showed the most efficient white emission with maximum luminance of 100.6 $cd/m^2$ at 15 V, maximum luminous efficiency of 1.52 cd/A, power efficiency of 0.71 lm/W, external quantum efficiency of 0.59%, and CIE coordinates of (0.35, 0.40) at 15.0 V, respectively.