• Title/Summary/Keyword: wheel tracking

Search Result 195, Processing Time 0.029 seconds

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.

A Design of Controller for 4-Wheel 2-D.O.F. Mobile Robot Using Fuzzy-Genetic algorithms

  • Kim, Sangwon;Kim, Sunghoe;Sunho Cho;chongkug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.607-612
    • /
    • 1998
  • In this paper, a controller using fuzzy-genetic algorithms is proposed for pat-tracking of WMR. A fuzzy controller is implemented so as to adjust appropriate crossover rate and mutation rate. A genetic algorithms is also implemented to have adaptive adjustment of control gain during optimizing process. To check effectiveness of this algorithms, computer simulation is applied.

  • PDF

PC-based 3D graphic spacecraft simulator using OpenGL

  • Kim, Seung-Jun;Lee, Sang-Wook;Jeong, Woo-Seong;Ahn, Byung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.6-68
    • /
    • 2002
  • $\textbullet$ We solved the attitude regulation and tracking problems of spacecrafts. $\textbullet$ We developed a PC-based 3D spacecraft simulator using OpenGL. $\textbullet$ We considered the rigid spacecrafts with gas-jet and reaction wheel actuator. $\textbullet$ In order to verify the effectiveness of the simulator, we applied the output-based controller $\textbullet$ Spacecraft models are animated by roll-pitch-yaw angles, constantly processed by numerical method.

  • PDF

Fuzzy Rule for Curve Path Tracking of a Unicycle Robot (유니사이클 로봇의 곡선경로 추종을 위한 퍼지규칙)

  • 김중완;정희균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.425-429
    • /
    • 1996
  • Our unicycle has simple mechanical structure. But unicycle's dynamic system is a very sensitive unstable nonlinear system. In this paper, a fuzzy inference control mechanism was established throughout an inquiry into human riding a unicycle, and we developed a direct fuzzy controller to control our unicycle robot. This proposed fuzzy controller is consisted with fuzzy logic controllers for attitude stability and wheel's velocity. Computer simulation results show that our fuzzy controller has very powerful performance to unstable nonlinear unicycle robot system.

  • PDF

An Experimental Consideration of Geosynthetics-reinforced Asphalt Pavement (토목섬유 아스팔트포장의 실험적 고찰)

  • 조삼덕;김남호;한상기;이대영
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.191-198
    • /
    • 2001
  • 국내 도로포장의 주요 파손형태는 주변환경 및 반복 교통하중 조건에 의한 소성변형(rutting), 피로균열, 반사균열, 온도균열 등이 있는데, 포장이 설계수명에 도달하기 이전에 주로 발생하며 이로 인한 도로포장의 유지관리에 막대한 국가예산이 낭비되고 있는 실정이다. 본 연구에서는 토목섬유 아스팔트 포장 시스템을 체계적으로 정립하기 위해 휠트래킹 시험과 균열저항성 시험을 수행하여 토목섬유 아스팔트 포장의 소성변형 및 균열 저항성을 분석하였다. 이러한 실험결과를 통해 아스팔트 포장에서의 토목섬유 보강 효과가 평가되었다.

  • PDF

2-Input 2-Output ANFIS Controller for Trajectory Tracking of Mobile Robot (이동로봇의 경로추적을 위한 2-입력 2-출력 ANFIS제어기)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.586-592
    • /
    • 2012
  • One approach of the control of a nonlinear system that has gained some success employs a fuzzy structure in cooperation with a neural network(ANFIS). The traditional ANFIS can only model and control the process in single-dimensional output nature in spite of multi-dimensional input. The membership function parameters are tuned using a combination of least squares estimation and back-propagation algorithm. In the case of a mobile robot, we need to drive left and right wheel respectively. In this paper, we proposed the control system architecture for a mobile robotic system that employs the 2-input 2-output ANFIS controller for trajectory tracking. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for mobile robotic systems.

Domain decomposition for GPU-Based continuous energy Monte Carlo power reactor calculation

  • Choi, Namjae;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2667-2677
    • /
    • 2020
  • A domain decomposition (DD) scheme for GPU-based Monte Carlo (MC) calculation which is essential for whole-core depletion is introduced within the framework of the modified history-based tracking algorithm. Since GPU-offloaded MC calculations suffer from limited memory capacity, employing DDMC is inevitable for the simulation of depleted cores which require large storage to save hundreds of newly generated isotopes. First, an automated domain decomposition algorithm named wheel clustering is devised such that each subdomain contains nearly the same number of fuel assemblies. Second, an innerouter iteration algorithm allowing overlapped computation and communication is introduced which enables boundary neutron transactions during the tracking of interior neutrons. Third, a bank update scheme which is to include the boundary sources in a way to be adequate to the peculiar data structures of the GPU-based neutron tracking algorithm is presented. The verification and demonstration of the DDMC method are done for 3D full-core problems: APR1400 fresh core and a mock-up depleted core. It is confirmed that the DDMC method performs comparably with the standard MC method, and that the domain decomposition scheme is essential to carry out full 3D MC depletion calculations with limited GPU memory capacities.

Development of The Moving Target Tracking Robot in Outdoor Environment (실외환경에서의 이동 목표 추종용 로봇의 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.954-962
    • /
    • 2002
  • In a park or street, we can see many people jogging or walking with their dogs tracking their masters. In this study, an entertainment robot that imitates a dog's behavior is created. The robot's task is tracking a moving target that is recognized as the master. In order to design the robot, the ecological approach. in which the robot's goals and surroundings heavily influence its design, is used. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a human jogging in outdoor space like a park. A sensor system which can detect the position of a master for the robot in the outdoor space, is developed. This sensor system consists of a signal transmitter which is at the hand of a master and some sensors which are mounted on the robot. The transmitter emits RF(radio frequency) and ultrasonic signals and the sensors detect the direction and distance from the robot to the transmitter by using the received signals. For the control architecture of the robot, a purely reactive behavior-based method is used in order to increase speed of response. The developed robot is evaluated through experiments conducted in indoor and outdoor environments.

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.