• Title/Summary/Keyword: wheel slip ratio

Search Result 46, Processing Time 0.026 seconds

Design Of Adaptive Sliding Mode Control For Aircraft Anti-Braking System (항공기 Anti-Braking System을 위한 적응 슬라이딩 모드 제어기 설계)

  • Choi, Hyung-Sup;Lee, Won-Ju;Park, Mig-Non;Kim, Eun-Tai
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1083-1084
    • /
    • 2008
  • This paper proposes the design of anti-braking system on aircraft and wheel slip ratio control using adaptive slide mode control. By maintaining the desired wheel slip ratio under runway conditions, we can obtain the maximal frictional force and reduce the braking range. In this paper, we apply an adaptive sliding mode control to aircraft brake system and it can guarantee the robustness under variations in brake characteristics. The performance of proposed controller is verified in simulations.

  • PDF

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error (가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정)

  • 황진권;송철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

Application of a Brake Pressure Restriction Valve to a Motorcylce ABS (제동압력 제한밸브의 모터싸이클 ABS에의 적용)

  • 지동익;류제하;김호수;임재우;박종혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • This paper presents an of a brake pressure restriction valve to a motorcycle anti-lock brake system(ABS). In the conventional anti-lock brake system of automobiles, slip ratio as a control variable is actively controlled, which requires wheel speed sensors, ECU, and a pressure modulator. In the ABS valve that has been developed for use in motorcycles, however, the brake pressure that is close to the wheel locking pressure is preset by simple exercises and then the valve just allows to pass the wheel locking pressure and cutoff the remaining pressure. Simulation studies with a single wheel braking dynamics and lumped chassis model show that the pressure restriction valve has basic ABS functions as well as some robustness properties for the uncertain load and road conditions as well as various initial braking speeds. Field tests also show that the pressure restriction valve avoids the wheel locking effectively.

  • PDF

An Experimental Study of an Anti-lock Brake System (미끄럼 방지 제동시스템에 대한 실험적 고찰)

  • Kang, Sung-Hwang;Kim, Jae-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2006
  • Anti-lock brake system(ABS) are designed to prevent wheel lock on all wheels of the vehicle by sensing wheel angular speed, processing the speed sensor signals in suitable digital electronic control circuits and comanding electrohydraulic actuators to control brake pressure. This study considers a control of ABS using wheel circumferential acceleration thresholds which avoids dangerous wheel locking due to excessive brake pressure during the vehicle braking and discusses the 3-channels, 3-sensors ABS system that employs "independent control" technique for the front wheels and "select low" technique for the rear wheels. The validities of the ABS such as vehicle stability, steerability and stopping distance during braking are assured through the vehicle tests on uniform asphalt straight roads.

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.

Prediction of Maneuverability and Efficiency for a Mobile Robot on Rough Terrain through the development of a Testbed for Analysis of Robot-terrain interaction (지형-로봇간의 상호작용 분석 장치의 개발을 통한 야지 주행 로봇의 기동성 및 효율성 예측)

  • Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.116-128
    • /
    • 2013
  • This paper focuses on development of a testbed for analysis of robot-terrain interaction on rough terrain and also, through one wheel driving experiments using this testbed, prediction of maximum velocity and acceleration of UGV. Firstly, from the review regarding previous researches for terrain modeling, the main variables for measurement are determined. A testbed is developed to measure main variables related to robot-terrain interaction. Experiments are performed on three kinds of rough terrains (grass, gravel, and sand) and traction-slip curves are obtained using the data of the drawbar pull and slip ratio. Traction-slip curves are used to predict driving performance of UGV on rough terrain. Maximum velocity and acceleration of UGVs are predicted by the simple kinematics and dynamics model of two kinds of 4-wheel mobile robots. And also, driving efficiency of UGVs is predicted to reduce energy consumption while traversing rough terrains.

Development of New Numerical Model and Controller of AFS System (AFS 시스템의 새로운 수학적 모델 및 제어기 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

VEHICLE SPEED ESTIMATION BASED ON KALMAN FILTERING OF ACCELEROMETER AND WHEEL SPEED MEASUREMENTS

  • HWANG J. K.;UCHANSKI M.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.475-481
    • /
    • 2005
  • This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

A Study On Steering System for Mobile Robot with Permanent Magnet Wheels (영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구)

  • Kim Jin-Gak;Yi Hwa-Cho;Han Seung-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF