• 제목/요약/키워드: wheat(Triticum aestivum L.)

검색결과 94건 처리시간 0.026초

밀 유전 배경에서 호밀 B 염색체가 감수분열 염색체 접합에 미치는 영향 (Effect of Rye B chromosome on Meiotic Chromosome Association in Wheat (Triticum aestivum L.) Genetic Background)

  • 조성우
    • 한국자원식물학회지
    • /
    • 제35권5호
    • /
    • pp.659-666
    • /
    • 2022
  • 이 연구에서는 밀 첨가 계통의 생식세포분열시, 호밀 B 염색체가 염색체 접합에 미치는 영향을 관찰하였다. 밀 첨가 계통은 동조관계에 있는 Leymus mollis와 L. racemosus 염색체를 각각 하나씩 가지고 있다. 밀의 유전적 배경에서 두 Leymus염색체의 이동은 genomic in situ hybridization에 의하여 확인되었다. 호밀 B 염색체를 가지고 있지 않은 밀 첨가 계통의 생식세포 제1중기 분열기에 두 Leymus 염색체의 대부분은 일가염색체를 보였다(98.1 ± 0.5%). 반면에 호밀 B 염색체를 가지고 있는 밀 첨가 계통에서 Leymus 이가염색체의 빈도(10.3 ± 0.2%)는 호밀 B 염색체를 가지고 있지 않은 밀 첨가 계통의 Leymus이가염색체의 빈도(1.9 ± 0.5%)보다 높았다. 호밀 B 염색체를 가지고 있지 않은 밀 첨가 계통에서는 비정상적인 구조를 가지고 있는 이가염색체가 관찰되었다. 반면, 비록 매우 낮은 빈도이지만 호밀 B 염색체를 가지고 있는 밀 첨가 계통에서는 정상적인 형태를 보이는 이가염색체가 확인되었다. 호밀 B 염색체의 영향은 또한 보통밀과 L. racemosus염색체 사이의 이가염색체의 형성을 유도하였으며, 보통밀과 L. mollis 염색체 사이의 삼가염색체의 형성도 유도하였다. 뿐만 아니라 보통밀 염색체 사이에서 초과 교차가 일어나는 것을 확인하였으며, 이러한 현상으로 원, 막대, 그리고 후라이팬 모양의 일반적인 이가염색체의 형태가 아닌 막대모양이나 응축된 형태의 보통밀 이가염색체가 확인되었다.

In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar

  • Huang, Chen;Gangola, Manu P.;Kutcher, H. Randy;Hucl, Pierre;Ganeshan, Seedhabadee;Chibbar, Ravindra N.
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.558-569
    • /
    • 2020
  • Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDP-glucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

Development and Application of Speed Vernalization System for Practical Speed Breeding in Wheat (Triticum aestivum L.)

  • Jin-Kyung Cha;Hyunjin Park;Youngho Kwon;So-Myeong Lee;Dongjin Shin;Jong-Hee Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.20-20
    • /
    • 2022
  • A traditional wheat breeding program needs more than 12-13 years to develop a new cultivar. In recent years, 'Speed breeding (SB)' system, which uses extremely extended photoperiod (22 h), enabled up to 4-6 generations of spring wheat per year. However, since almost 70% of wheat cultivars are winter type, and over 95% of total cultivation area is for winter wheat in Korea, optimized vernalization treatment was essential for improving the SB system. Several vernalization temperatures and durations were tested with various genotypes, and the 4 weeks of 8-10 ℃ vernalization treatment was the most effective to develop 4 generations per year, for both spring and winter type wheat cultivars. This 'Speed vernalization (SV)' system followed by SB, allowed developing a new F6 recombinant inbred lines (RILs) within 2 years. Among the 184 RILs, which derived from a cross between Jokoyung and Joongmo2008, two outstanding lines were selected for yield trial test, and then named Milyang52 and Milyang53. Compared to the traditional wheat breeding program, over 60% of the time was saved to develop these two lines. Marker-assisted selection and backcross were also combined with the SV system. YW3215-2B-1 (Jokoyung*3/Gamet), which has similar agronomic traits with Jokyoung and the same Glu-B1 allele with Garnet, was developed within 2.5 years. Thus, the SV system combined with molecular breeding technology would help breeders to make a new cultivar with less time and high efficiency.

  • PDF

Effectiveness of Various Pseudomonas spp. and Burkholderia caryophylli Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum aestivum L.)

  • Shaharoona, B.;Jamro, G.M.;Zahir, Z.A.;Arshad, M.;Memon, K.S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1300-1307
    • /
    • 2007
  • This study assessed the possible role of different traits in selected plant growth-promoting rhizobacteria (PGPR) for improving wheat growth and yield under natural conditions. Rhizobacteria exhibiting 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity were isolated and screened for their growth-promoting activity in wheat under axenic conditions. Five isolates belonging to Pseudomonas and one Burkholderia caryophylli isolate that showed promising performances under axenic conditions were selected and characterized for in vitro ACC-deaminase activity, chitinase activity, auxin production, P solubilization, and root colonization. These isolates were then used as inocula for wheat cultivated under natural conditions in pot and/or field trials. Significant increases in root elongation, root weight, tillers per pot, 1,000-grain weight, and grain and straw yields were observed in response to inoculation with PGPR in the pot trials. Inoculation with these PGPR was also effective under field conditions and increased the wheat growth and yield significantly. However, the efficacy of the strains was inconsistent under the axenic, pot, and field conditions. Pseudomonas fluorescens ($ACC_{50}$), which exhibited a relatively high in vitro ACC-deaminase activity, chitinase activity, auxin production, and P solubilization and more intensive root colonization, was the most efficient isolate under the field conditions. Therefore, these results demonstrated that ACC-deaminase activity is an efficient parameter for the selection of promising PGPR under axenic conditions. However, additional traits of PGPR, including auxin production, chitinase activity, P solubilization, and root colonization, are also important for selecting PGPR as biofertilizers.

Genetic Variation of High Molecular Weight Glutenin (HMW-Glu) Subunit in Korean Wheat

  • Hong, Byung-Hee;Park, Chul-Soo
    • 한국작물학회지
    • /
    • 제43권4호
    • /
    • pp.259-263
    • /
    • 1998
  • High molecular weight glutenin (HMW-Glu) subunit compositions of 73 Korean wheat cultivars and experimental lines were evaluated by using one dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This method is suitable for obtaining a good resolution of 1Dx2 and 1Ax2$^*$ without adverse effects on separation of other HMW-Glu subunits. Korean wheats examined in this study could be divided into 15 different groups on the basis of HMW-Glu subunit compositions. From the wheat lines tested, it was identified that there were three alleles at the Glu-Al, five at the Glu-Bl and three at the Glu-D1 loci. The null allele of the Glu-Al was occurred in high frequency (79.4%), while low frequencies for 1Ax1 (12.3%) and 1Ax2$^*$(8.2%) were found. High frequency (75.3%) of the subunit pairs of 1Bx7+1By8 at the Glu-Bl loci compared with other subunits was found. The frequencies of subunits 1Dx2. 2+1Dy12 and 1Dx2+1Dy12 from the Glu-D1 loci were 54. 8% and 37.0%, respectively. However, a few Korean wheat lines (8.2%) carried 1Dx5 + 1Dy10 subunit pair which are responsible for good breadmaking quality. The information of HMW-Glu subunit compositions provide a useful tool to characterize wheat lines, and can be directly used in selection of breeding lines of different end-use properties.

  • PDF

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.213-222
    • /
    • 2010
  • Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to $40^{\circ}C$ for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular $CO_2$ concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

Reaction of Five Non-cereal Grasses to Five Races and Two Host Selective Toxins of Pyrenophora tritici-repentis

  • Ali, Shaukat;Langham, M.A.C.
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.245-251
    • /
    • 2015
  • Alternative hosts increase the difficulty of disease management in crops because these alternate hosts provide additional sources of primary inoculum or refuges for diversity in the pathogen gene pool. Agropyron cristatum (crested wheatgrass), Bromus inermis (smooth bromegrass), Pascopyrum smithii (western wheatgrass), Stipa viridula (green needlegrass), and Thinopyrum intermedium (intermediate wheatgrass), commonly identified in range, prairie, verge, and soil reclamation habitats, serve as additional hosts for Pyrenophora tritici-repentis, the cause of tan spot in wheat (Triticum aestivum L.). A. cristatum (five lines), B. inermis (seven lines), P. smithii (four lines), S. viridula (two lines), and T. intermedium (six lines) were tested for their reactions to 30 representative P. tritici-repentis isolates from races 1-5. Plants were grown until the two-three-leaf stage in a greenhouse, inoculated individually with the 30 isolates, held at high humidity for 24 h, and rated after 7 days. All lines developed lesion types 1-2 (resistant) based on a 1-5 rating scale. Also, leaves from an additional plant set were infiltrated with two host selective toxins, Ptr ToxA as a pure preparation and Ptr ToxB as a dilute crude culture filtrate. All lines were insensitive to the toxins. Results indicate that these grass hosts have a limited or nonsignificant role in tan spot epidemiology on wheat in the northern Great Plains. Additionally, the resistant reactions demonstrated by the grass species in this research indicate the presence of resistance genes that can be valuable to wheat breeding programs for improving wheat resistance to P. tritici-repentis.

소맥의 유수, 절간 및 엽초의 신장시기와의 관계 (Relationship among Elongation Periods of Young Spikes, Internodes and Leaf-sheaths in Wheat (Triticum aestivum L.))

  • 김석동;하용웅
    • 한국작물학회지
    • /
    • 제27권3호
    • /
    • pp.238-242
    • /
    • 1982
  • 단간 조숙품종인 그루밀을 재료로 하여 '80년 4월 15일부터 5월 30일까지 5일 간격으로 10회에 걸쳐 유수, 절간, 엽초 등의 길이를 조사한 자료를 가지고 이들 각각의 신장과 상호 관련성을 분석한 결과를 요약하면 다음과 같다. 1. 동기간(4월 15일- 5월 30일) 중에 유수는 0.6cm에서 8.3cm로 신장하였으며, 출수전 20일(4월 25일)부터 급신장하기 시작하여 술수전 5일(5월 10일)에 그 신장을 거의 완료하였는데 이 기간 중 일당 4.4mm의 신장을 보였고 가장 신장량이 컸던 시기는 술수전 15일부터 10일 사이로 이 때는 일당 6.5mm씩 신장하였다. 2. 절간장중 제 3절간의 신장도 유수의 신장시기와 거의 일치하였으며 출수전 20일부터 급신장하여 출수전 5일에 그 신장을 완료하였다. 3. 엽초장 중 제 1 엽초의 신장시기와 그 양상이 유수의 신장과 또한 일치하였다. 4 유수는 제3절간장과 $r=.974^{***}$, 제1 엽초장과는 $r=.954^{***}$의 상관을 보였고, 제3절간장은 제1엽초장과 $r=.995^{***}$로 이들은 서로 고도의 유의적인(0.1%) 정의 상관을 보였다.

  • PDF

밀의 고분자 글루테닌 단백질 (High Molecular Weight Glutenin Subunit in Common Wheat (Triticum aestivum L.))

  • 이종열;김영태;강천식;임선형;하선화;안상낙;김영미
    • 한국육종학회지
    • /
    • 제43권5호
    • /
    • pp.479-489
    • /
    • 2011
  • Gluten is the main functional component of wheat, and is the main source of the viscoelastic properties in a dough. One of the gluten group is glutenin, which is composed of high molecular weight (HMW) and low molecular weight (LMW) subunits. The HMW glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the grain. They are encoded by the Glu-1 loci located on the long arms of homeologous group one chromosomes, with each locus comprising two genes encoding x- and y-type subunits. The presence of certain HMW subunits is positively correlated with good bread-making quality. The highly conserved N- and C- terminal contaning cystein residues which form interand intra-chain disulphide bonds. This inter chain disulphide bonds stabilize the glutenin polymers. In contrast, the repetitive domains that comprise the central part of the HMW-GS are responsible for the elastic properties due to extensive arrays of interchain hydrogen bonds. In this review, we discuss HMW-GS, HMW-GS structure and gluten elasticity, relationship between HMW-GS and bread wheat quality and genetic engineering of the HMW-GS.

Long-Term Study of Weather Effects on Soybean Seed Composition

  • Bennett John O.;Krishnan Hari B.
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.32-38
    • /
    • 2005
  • A long-term study initiated in 1989 at San-born Field, Columbia, Missouri, was designed to evaluate the affect of environmental factors, nitrogen application, and crop rotation on soybean (Glycine max [L.] Merr.) seed composition. Soybeans were grown as part of a four- year rotation which included corn (Zea maize L.), wheat (Triticum aestivum L.), and red clover (Trifolium pratense L.). Results from soil tests made prior to initiation of the study and subsequently every five years, were used to calculate application rates of nitrogen, phosphorus, and potassium necessary for target yield of pursuant crops. In the experimental design, nitrogen was applied to one-half of the plot on which the non-leguminous crop, either corn or wheat was grown. Analysis of soybean seed by near infrared reflectance spectroscopy collected over an 11-year period revealed a linear increase in protein and decrease in oil content. Application of nitrogen fertilizer to non-leguminous crops did not have an apparent effect on total protein or oil content of subsequent soybean crop. Analysis of soybean seed proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with computer­assisted densitometry revealed subtle changes in the accumulation of seed proteins. Immunoblot analysis using antibodies raised against the $\beta-subunit$ of $\beta-conglycinin$ showed a gradual increase in the accumulation of the 7S components during successive years of the experiment. A linear increase in temperature and decrease in rainfall was observed from the onset of data· collection. Higher temperatures during the growing season have been linked to increased protein and diminished oil content of soybean, thus changes observed in this study are possibly related to climatic conditions. However, crop rotation and subsequent changes in soil ecology may contribute to these observed changes in the seed composition.