DOI QR코드

DOI QR Code

In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar

  • Huang, Chen (Department of Plant Sciences, University of Saskatchewan) ;
  • Gangola, Manu P. (Department of Plant Sciences, University of Saskatchewan) ;
  • Kutcher, H. Randy (Department of Plant Sciences, University of Saskatchewan) ;
  • Hucl, Pierre (Department of Plant Sciences, University of Saskatchewan) ;
  • Ganeshan, Seedhabadee (Department of Plant Sciences, University of Saskatchewan) ;
  • Chibbar, Ravindra N. (Department of Plant Sciences, University of Saskatchewan)
  • Received : 2020.07.16
  • Accepted : 2020.10.20
  • Published : 2020.12.01

Abstract

Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDP-glucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

Keywords

References

  1. Audenaert, K., Vanheule, A., Hofte, M. and Haesaert, G. 2013. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel) 6:1-19. https://doi.org/10.3390/toxins6010001
  2. Beres, B. L., Brule-Babel, A. L., Ye, Z., Graf, R. J., Turkington, T. K., Harding, M. W., Kutcher, H. R. and Hooker, D. C. 2018. Exploring Genotype × Environment × Management synergies to manage Fusarium head blight in wheat. Can. J. Plant Pathol. 40:179-188. https://doi.org/10.1080/07060661.2018.1445661
  3. Berthiller, F., Dall'Asta, C., Schuhmacher, R., Lemmens, M., Adam, G. and Krska, R. 2005. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 53:3421-3425. https://doi.org/10.1021/jf047798g
  4. Boutigny, A.-L., Richard-Forget, F. and Barreau, C. 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 121:411-423. https://doi.org/10.1007/s10658-007-9266-x
  5. Buerstmayr, H., Lemmens, M., Grausgruber, H. and Ruckenbauer, P. 1997. Breeding for scab resistance in wheat: inheritance of resistance and possibilities for in vitro selection. In: Fusarium head scab: global status and future prospects, eds. by H. J. Dubin, L. Gilchrist, J. Reeves and A. McNab, pp. 52-58. CIMMYT, Mexico, Mexico, D.F.
  6. Burt, C., Steed, A., Gosman, N., Lemmens, M., Bird, N., Ramirez-Gonzalez, R., Holdgate, S. and Nicholson, P. 2015. Mapping a Type 1 FHB resistance on chromosome 4AS of Triticum macha and deployment in combination with two Type 2 resistances. Theor. Appl. Genet. 128:1725-1738. https://doi.org/10.1007/s00122-015-2542-9
  7. Bushnell, W. R., Hazen, B. H. and Pritsch, C. 2003. Histology and physiology of Fusarium head blight. In: Fusarium head blight of wheat and barley, eds. by K. J. Leonard and W. R. Bushnell, pp. 44-83. The American Phytopathological Society, St. Paul, MN, USA.
  8. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. APS Press, St. Paul, MN, USA. 260 pp.
  9. Diamond, H. and Cooke, B. M. 1999. Towards the development of a novel in vitro strategy for early screening of Fusarium ear blight resistance in adult winter wheat plants. Eur. J. Plant Pathol. 105:363-372. https://doi.org/10.1023/A:1008717602202
  10. Feekes, W. 1941. De tarwe en haar milieu. In: Verslagen van de Technische Tarwe Commissie, 17, ed. by W. Feekes, pp. 523-888. Hoitsema, Groningen, The Netherlands.
  11. Ganeshan, S. and Chibbar, R. N. 2017. A simple novel expedited spike culture-derived variation creation strategy in wheat. Cereal Res. Commun. 45:539-548. https://doi.org/10.1556/0806.45.2017.047
  12. Ganeshan, S., Drinkwater, J. M., Repellin, A. and Chibbar, R. N. 2010. Selected carbohydrate metabolism genes show coincident expression peaks in grains of in vitro-cultured immature spikes of wheat (Triticum aestivum L.). J. Agric. Food Chem. 58:4193-4201. https://doi.org/10.1021/jf903861q
  13. Ganeshan, S., Leis, M., Drinkwater, J. M., Madsen, L. T., Jain, J. C. and Chibbar, R. N. 2012. In vitro-cultured wheat spikes provide a simplified alternative for studies of cadmium uptake in developing grains. J. Sci. Food Agric. 92:1740-1747. https://doi.org/10.1002/jsfa.5540
  14. Gilbert, J. and Woods, S. M. 2006. Strategies and considerations for multi-location FHB screening nurseries. In: The Global Fusarium Initiative for International Collaboration: A Strategic Planning Workshop, eds. by T. Ban, J. M. Lewis and E. E. Phipps, pp. 93-102. International Maize and Wheat Improvement Center, El Batan, Mexico.
  15. Huang, C., Gangola, M. P. and Chibbar, R. N. 2020. Utilization of wheat spike culture to assess Fusarium head blight disease progression and mycotoxin accumulation. Can. J. Plant Pathol. 42:62-71. https://doi.org/10.1080/07060661.2019.1621935
  16. Huang, C., Gangola, M. P., Ganeshan, S., Hucl, P., Kutcher, H. R. and Chibbar, R. N. 2019. Spike culture derived wheat (Triticum aestivum L.) variants exhibit improved resistance to multiple chemotypes of Fusarium graminearum. PLoS ONE 14:e0226695. https://doi.org/10.1371/journal.pone.0226695
  17. Imathiu, S., Edwards, S., Ray, R. and Back, M. 2014. Artificial inoculum and inoculation techniques commonly used in the investigation of Fusarium head blight in cereals. Acta Phytopathol. Entomol. Hung. 49:129-139. https://doi.org/10.1556/APhyt.49.2014.2.1
  18. Jin, F., Zhang, D., Bockus, W., Baenziger, P. S., Carver, B. and Bai, G. 2013. Fusarium head blight resistance in U.S. winter wheat cultivars and elite breeding lines. Crop Sci. 53:2006-2013. https://doi.org/10.2135/cropsci2012.09.0531
  19. Kumar, K., Xi, K., Turkington, T., Tekauz, A., Helm, J. H. and Tewari, J. P. 2011. Evaluation of a detached leaf assay to measure Fusarium head blight resistance components in barley. Can. J. Plant Pathol. 33:364-374. https://doi.org/10.1080/07060661.2011.590820
  20. Kurata, H. and Ueno, Y. 1984. Toxigenic fungi: their Toxins and health hazard. In: Proceedings of the Mycotoxin Symposia Held in the Third International Mycological Congress, eds. by H. Kurata and Y. Ueno, pp. 1-363. Kodansha, Tokyo.
  21. Lemmens, M., Scholz, U., Berthiller, F., Dall'Asta, C., Koutnik, A., Schuhmacher, R., Adam, G., Buerstmayr, H., Mesterházy, A., Krska, R. and Ruckenbauer, P. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol. Plant-Microbe Interact. 18:1318-1324. https://doi.org/10.1094/MPMI-18-1318
  22. Lulin, M., Yi, S., Aizhong, C., Zengjun, Q., Liping, X., Peidu, C., Dajun, L. and Xiu-e, W. 2009. Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai. Mol. Biol. Rep. 37:785-795. https://doi.org/10.1007/s11033-009-9606-3
  23. Marasas, W. F. O., Nelson, P. E. and Toussoun, T. A. 1984. Toxigenic Fusarium species, identity and mycotoxicology. Pennsylvania State University Press, University Park, PA. 328 pp.
  24. McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G. and Van Sanford, D. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 96:1712-1728. https://doi.org/10.1094/PDIS-03-12-0291-FE
  25. McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
  26. Mesterhazy, A. 1987. Selection of head blight resistant wheats through improved seedling resistance. Plant Breed. 98:25-36. https://doi.org/10.1111/j.1439-0523.1987.tb01086.x
  27. Mesterhazy, A. 2002. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant Pathol. 108:675-684. https://doi.org/10.1023/A:1020631114063
  28. Mesterhazy, A., Bartok, T., Mirocha, C. G. and Komoroczy, R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118:97-110. https://doi.org/10.1046/j.1439-0523.1999.118002097.x
  29. Miedaner, T., Sieber, A.-N., Desaint, H., Buerstmayr, H., Longin, C. F. H. and Würschum, T. 2017. The potential of genomicassisted breeding to improve Fusarium head blight resistance in winter durum wheat. Plant Breed. 136:610-619. https://doi.org/10.1111/pbr.12515
  30. Miller, J. D., Young, J. C. and Sampson, D. R. 1985. Deoxynivalenol and Fusarium head blight resistance in spring cereals. J. Phytopathol. 113:359-367. https://doi.org/10.1111/j.1439-0434.1985.tb04837.x
  31. Parry, D. W., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals: a review. Plant Pathol. 44:207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
  32. Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., Kuchler, K., Glossl, J., Luschnig, C. and Adam, G. 2003. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 278:47905-47914. https://doi.org/10.1074/jbc.M307552200
  33. Ruan, Y., Comeau, A., Langevin, F., Hucl, P., Clarke, J. M., Brule-Babel, A. and Pozniak, C. J. 2012. Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome 55:853-864. https://doi.org/10.1139/gen-2012-0110
  34. Schroeder, H. W. and Christensen, J. J. 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831-838.
  35. Shah, L., Ali, A., Yahya, M., Zhu, Y., Wang, S., Si, H., Rahman, H. and Ma, C. 2018. Integrated control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant Pathol. 67:532-548. https://doi.org/10.1111/ppa.12785
  36. Sharma, P., Gangola, M. P., Huang, C., Kutcher, H. R., Ganeshan, S. and Chibbar, R. N. 2018. Single nucleotide polymorphisms in B-genome specific UDP-glucosyl transferases associated with Fusarium head blight resistance and reduced deoxynivalenol accumulation in wheat grain. Phytopathology 108:124-132. https://doi.org/10.1094/PHYTO-04-17-0159-R
  37. Shin, S., Kim, K.-H., Kang, C.-S., Cho, K.-M., Park, C. S., Okagaki, R. and Park, J.-C. 2014. A simple method for the assessment of Fusarium head blight resistance in Korean wheat seedlings inoculated with Fusarium graminearum. Plant Pathol. J. 30:25-32. https://doi.org/10.5423/PPJ.OA.06.2013.0059
  38. Stack, R. W. and McMullen, M. P. 1995. A visual scale to estimate severity of Fusarium head blight in wheat. North Dakota State University, Fargo, ND, USA. 1095 pp.
  39. Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M. and Buerstmayr, H. 2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol. 42:165-174. https://doi.org/10.1007/s40858-017-0127-7
  40. Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S., Starkey, D. E., Gilbert, J., Geiser, D. M. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484. https://doi.org/10.1016/j.fgb.2007.10.003
  41. Xue, A. G., Armstrong, K. C., Voldeng, H. D., Fedak, G. and Babcock, C. 2004. Comparative aggressiveness of isolates of Fusarium spp. causing head blight on wheat in Canada. Can. J. Plant Pathol. 26:81-88. https://doi.org/10.1080/07060660409507117
  42. Yang, Z. P., Yang, X. Y. and Huang, D. C. 1999. Comparison of evaluation methods for selection of resistance to Fusarium head blight in a recurrent selection programme in wheat (Triticum aestivum L.). Plant Breed. 118:289-292. https://doi.org/10.1046/j.1439-0523.1999.00385.x